Abstract:
An antenna circuit for a device of transmission/reception by inductive coupling, including a first inductive element in parallel with a capacitive element and, between each node of the parallel association and two terminals of a switch, a second inductive element.
Abstract:
An electronic device includes a near-field communication module and a powering circuit for delivering a power supply voltage to the near-field communication module. When the near-field communication module is in a low power mode, the powering circuit is configured for an operational mode where it is periodically started to provide the power supply voltage.
Abstract:
The present disclosure relates to a near-field communication device including a near-field communication controller. The near-field communication controller includes at least one first demodulator, adapted to apply a first type of demodulation to a first signal modulated according to a first or a second type of modulation; and at least one second demodulator, adapted to apply a second type of demodulation to the first signal.
Abstract:
A circuit for a communication device and a method for switching a communication device are disclosed. In an embodiment, a method includes activating at least one first antenna and at least one second antenna of a near-field communication (NFC) device for switching the NFC device between first field detection phases and second card detection phases.
Abstract:
An embodiment of the present description concerns a method wherein a duration of a periodic step of activation of a near-field communication circuit of a first device is calibrated according to a time interval between an activation of the circuit and a reception, by the first device, of a message transmitted by a second device.
Abstract:
A device includes a first circuit that includes a near-field emission circuit, a second circuit, and a hardware connection linking the first circuit to the second circuit. The hardware connection is dedicated to a priority management between the first circuit and the second circuit. In addition, priority management information can be communicated between a near-field emission circuit and a second circuit. The communicating occurs between a dedicated hardware connection connecting the near-field emission circuit to the second circuit.
Abstract:
An embodiment subscriber identification module includes a first communication interface, including first pads intended to be coupled to a modulator-demodulator circuit; a second interface, including second pads intended to be coupled to a subscriber identification module card; and a switching circuit, configured to couple the first pads to the second pads or to a communication module integrated to the subscriber identification module. Another embodiment concerns a method of controlling the module.
Abstract:
An embodiment of the present description concerns a method wherein a duration of a periodic step of activation of a near-field communication circuit of a first device is calibrated according to a time interval between an activation of the circuit and a reception, by the first device, of a message transmitted by a second device.
Abstract:
In an embodiment a method for dynamic power control of a power level transmitted by an antenna of a contactless reader is disclosed. The method may include supplying a power to the antenna and performing at least one power adjusting cycle for adjusting a power level during a contactless transaction with a transponder, each power adjusting cycle including modifying the power supplied to the antenna to a predetermined level of power, performing a first measuring of a loading effect on the antenna at the predetermined level of power and adjusting the power level according to the measured loading effect.
Abstract:
A device includes an electronic circuit and a voltage-controlled oscillator configured to receive information representative of a power supply voltage of the device. The voltage-controlled oscillator is coupled to the electronic circuit. A first counter is configured to count pulses supplied by the voltage-controlled oscillator and a second counter is configured to count pulses of a clock signal. The device is configured to estimate an average power of the electronic circuit based on the pulses counted by the first counter.