Abstract:
A system and method for synchronizing two devices in communication with each other. When communication between the two devices is to be established, a synchronization process may be invoked. In an embodiment, a first device may initiate sending synchronization signals having rising edge and falling edge pairs. The second device may include a controller configured to receive the synchronization signals. However, noise may inhibit the ability of the controller to correctly receive and/or interpret the synchronization signals. Noise may cause detection components to falsely detect noise as a synchronization signal or may cause detection components to miss detection of an actual synchronization signal. A window generator may be used to generate comparison windows for the controller to detect synchronization signals. Further, the detection window duration and start times may be adjusted based on previously detected (or undetected) synchronization signals in order to compensate for noise overshadowing synchronization signals.
Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
Disclosed herein is an electronic device including a first touch circuit to be coupled to a first touch sensing unit, the first touch sensing unit having first drive lines and first sense lines intersecting the first drive lines. A second touch circuit is to be coupled to a second touch sensing unit, the second touch sensing unit having second drive lines and second sense lines intersecting the second drive lines. A touch force circuit is to be coupled to a touch force sensing unit, the touch force sensing unit having third drive lines and third sense lines intersecting the third drive lines. The first touch circuit, second touch circuit, and touch force circuit are configured to drive the first, second, and third drive lines as a function of a synchronization signal, and acquire data from the first, second, and third sense lines as a function of the synchronization signal.
Abstract:
A current source includes a first current path including a first current mirror transistor and an input current source coupled in series, a second current path including a second current minor transistor, wherein control terminals of the first and second current minor transistors are connected, a first circuit configured to provide a controlled auxiliary current in the second current path, and a second circuit configured to provide a controlled output current in the second current path when or after the auxiliary current has reached steady state. The current source may include one or more cascode transistors in the first current path and one or more cascode transistors in the second current path. The first circuit may be activated before the second circuit is activated.
Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
Abstract:
According to one embodiment of the present disclosure, a touch controller is adapted to be coupled to a touch screen and to a motion sensor. The touch controller is operable in response to a signal from the motion sensor indicating a first motion to switch from a hover event sensing mode of operation to a gesture event sensing mode of operation. In one embodiment, the touch controller is operable in the hover event sensing mode of operation to detect a first hover event and is thereafter operable, in response to the signal from the motion sensor indicating a first motion has occurred, to switch to the gesture event sensing mode of operation and detect a first gesture event.
Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
A touch screen device having a touch screen panel and a method for operating a touch screen device are provided. The method includes monitoring, during a noise monitoring phase, channel signals of a first set of channels and a second set of channel of the touch screen panel, detecting a stylus signal in response to a channel signal greater than a stylus threshold and less than a palm threshold, selecting the first set of channels when the stylus signal is detected on at least one channel of the first set of channels and is not detected on the second set of channels, and selecting the second set of channels when the stylus signal is detected on at least one channel of the second set of channels and is not detected on the first set of channels.