Abstract:
An organic light emitting display device includes data lines and an auxiliary data line, scan lines and emission control lines crossing the data lines and the auxiliary data line, display pixels at crossing regions of the data lines, the scan lines and the emission control lines, auxiliary pixels at crossing regions of the auxiliary data line, the scan lines and the emission control lines, and auxiliary lines coupled to the auxiliary pixels. Each of the auxiliary pixels includes a discharge transistor coupled to one of the auxiliary lines and a first power voltage line to which a first power voltage is supplied and a discharge transistor controller including a plurality of transistors and configured to control the discharge transistor.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display disposed on the substrate, an opposite substrate disposed to face the substrate with the display therebetween, a seal disposed between the substrate and the opposite substrate to couple the substrate to the opposite substrate and arranged around an outer circumference of the display such that the display is located inside the seal, and a support disposed between the substrate and the opposite substrate and arranged around a corner of the seal so that the corner of the seal is located inside the support.
Abstract:
A display panel including a first substrate, a second substrate disposed on the first substrate, a coupling member disposed between the first substrate and the second substrate to couple the first substrate and the second substrate, a plurality of sensing patterns disposed on the second substrate, a plurality of sensing pads disposed on the second substrate and electrically connected to the sensing patterns, respectively, a plurality of protruding portions disposed on the second substrate and extending from the sensing pads, respectively, to an edge of the second substrate, and a light shielding part disposed between the edge of the second substrate and the sensing pads to overlap at least a portion of the coupling member.
Abstract:
A display cell includes a signal line electrically connected to a pixel arranged in a display area, a signal pad unit disposed in a peripheral area adjacent to the display area, and including a signal pad electrically connected to the signal line, an inspection pad unit disposed in a turn-on inspection area, and including an inspection pad electrically connected to the signal pad, where the inspection pad is configured to receive a turn-on inspection signal, and a power supply voltage line configured to apply a power supply voltage to the pixel, extending from the inspection pad unit to the peripheral area, and divided into a plurality of sublines by at least one slit pattern in a cut-off area between the peripheral area and the turn-on inspection area.
Abstract:
A display device includes a first substrate, a display structure, a sensing structure, a sensing signal transmission film, and an image signal transmission film. The first substrate includes a display region and a non-display region at least partially surrounding the display region. The non-display region includes a first portion and a second portion facing the first portion. The display structure is disposed in the display region. The sensing structure is disposed on the display structure. The sensing signal transmission film is electrically connected to the sensing structure. The image signal transmission film is electrically connected to the display structure. The sensing signal transmission film is disposed in the first portion of the non-display region. The image signal transmission film is disposed in the second portion of the non-display region.
Abstract:
An organic light emitting device includes a first substrate including a display area and a non-display area, and a dummy metal layer disposed on the first substrate in the non-display area. The dummy metal layer includes a first dummy metal layer and a second dummy metal layer that overlap each other. The organic light emitting device further includes an insulating layer disposed between the first dummy metal layer and the second dummy metal layer in a cross-sectional view, a second substrate covering the first substrate, and a sealant disposed between the first substrate and the second substrate and overlapping the dummy metal layer. The first dummy metal layer is electrically connected to the second dummy metal layer, and the sealant contacts the second dummy metal layer.
Abstract:
An organic light emitting display device includes a display area and a non-display area. The display area includes display pixels at crossing areas of data lines, scan lines, and emission control lines. The non-display area includes auxiliary pixels at crossing positions of auxiliary data lines, scan lines, and emission control lines. The display device also includes a scan driver to supply scan signals to the scan lines, a first data driver to supply data voltages to the data lines, a second data driver to supply an auxiliary data voltage to the auxiliary data line, and a demultiplexer between the data lines and the first data driver.
Abstract:
An organic light emitting diode display according to an example embodiment of the present invention includes: a substrate; a scan line and a data line that are insulated from one another and crossing each other on the substrate; a first transistor on the substrate and connected to the scan line and the data line; a second transistor connected to the first transistor; a first electrode connected to the second transistor and having a cutout; an organic emission layer on the first electrode; and a second electrode on the organic emission layer, wherein the cutout is at a position corresponding to the data line.
Abstract:
A display panel and a repairing method thereof are disclosed. In one aspect, the display panel includes an active area including a plurality of pixels and a plurality of signal lines. The panel also includes a repair line at least partially surrounding the active area and overlapping the signal line in the active area and a plurality of first transistors formed on a side of the active area, wherein one end of each of the first transistors overlaps the repair line. The panel further includes a sealing portion configured to seal the active area, the repair line, and the first transistors. The panel also includes a pad portion formed outside the sealing portion and including a plurality of dummy pads respectively connected to the first transistors and a plurality of driving pads respectively connected to the signal lines.
Abstract:
An organic light emitting display device includes a substrate including a display area and a non-display area, a plurality of scan lines extended in a first direction on the substrate, a plurality of data lines extended in a second direction intersecting the first direction, a plurality of first switching elements in the display area, the plurality of first switching elements being connected to the scan lines and data lines, organic emission layers connected to the first switching elements, first dummy lines between corresponding adjacent ones of the plurality of scan lines, the first dummy lines extending in the first direction, second switching elements disposed in the non-display area, the second switching elements being adjacent to first ends of the first dummy lines, and second dummy lines extended in the second direction, the second dummy lines being adjacent to the second switching elements.