Abstract:
A display device includes a first substrate; a plurality of gate lines arranged in a row direction on the first substrate; a plurality of data lines arranged in a column direction intersecting the row direction; and a plurality of pixels formed in a plurality of pixel areas defined by the gate and data lines, the plurality of pixels comprising at least a first pixel and a second pixel respectively disposed in a first pixel area and a second pixel area that are immediately adjacent to each other. Each of the first and second pixels comprises a thin film transistor electrically connected to the gate and data lines, and a pixel electrode electrically connected to the thin film transistor. The data lines are disposed-apart by different distances from each other in the column direction. Each of the first and second pixel areas comprises a first edge portion adjacent to one of the gate lines and a second edge portion adjacent to another of the gate lines, a length of the first edge portion being greater than a length of the second edge portion. The thin film transistor is disposed at the first edge portion of the first and second pixel areas.
Abstract:
A fingerprint sensor includes: sensor pixels, each including a first transistor which controls a sensing signal to be outputted to a corresponding one of output lines; power lines disposed on a vertical line basis and each electrically connected to sensor pixels disposed on a corresponding vertical line; and a power supply unit which supplies reference voltages to the power lines. The power supply unit supplies the reference voltages, which is adjusted on the vertical line basis, to the power lines.
Abstract:
A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.
Abstract:
A liquid crystal display includes: a first substrate; a second substrate facing the first substrate; a liquid crystal layer formed between the first substrate and the second substrate; and a first color pixel area, a second color pixel area, a third color pixel area, and a fourth color pixel area, wherein the first, second, third, and fourth color pixel areas are formed on one of the first substrate and the second substrate. The first, second, and third color pixel areas respectively include one of a red filter, a green filter, and a blue filter, and the fourth color pixel area includes a white filter. A cross-section of the white filter has a parabolic shape or a semicircular shape.
Abstract:
A liquid crystal display includes a first substrate including first to fourth color pixel areas, first to fourth thin film transistors disposed on the first substrate, and first to fourth pixel electrodes connected to the first to fourth thin film transistors. Each of the first to fourth pixel electrodes includes a cross stem portion including a horizontal stem portion and a vertical stem portion crossing the horizontal stem portion, and minute branch portions extending from the cross stem portion at a predetermined angle with respect to a horizontal direction. A third angle of the minute branch portions of the third pixel electrode is greater than each of first and second angles of the minute branch portions of the respective first and second pixel electrodes. Each of the first and second angles is greater than a fourth angle of the minute branch portions of the fourth pixel electrode.
Abstract:
Embodiments of the present disclosure provide a display device comprising: a substrate; a thin film transistor layer on a first surface of the substrate and including a first hole; a light emitting element layer on the thin film transistor layer and including a light emitting element; a first light blocking layer between the substrate and the thin film transistor layer and including a second hole overlapping the first hole in a thickness direction of the substrate; and a second light blocking layer between the thin film transistor layer and the light emitting element layer and including a third hole overlapping the first hole and the second hole in the thickness direction of the substrate.
Abstract:
A fingerprint sensor and a display device include a substrate. A circuit element layer is disposed on a first surface of the substrate and includes a semiconductor layer, conductive layers and at least one opening portion. A light emitting element layer is disposed on the circuit element layer and includes at least one light emitting element. A sensor layer is disposed on a second surface of the substrate and includes at least one light sensor corresponding to the opening portion. The opening portion is defined by non-overlapping of the semiconductor layer and the conductive layers, the opening portion has a closed loop shape in plan view, and at least a portion of the closed loop shape includes a curve, or an internal angle of the at least a portion of the closed loop shape is an obtuse angle.
Abstract:
A fingerprint sensor and a display device include a substrate. A circuit element layer is disposed on a first surface of the substrate and includes a semiconductor layer, conductive layers and at least one opening portion. A light emitting element layer is disposed on the circuit element layer and includes at least one light emitting element. A sensor layer is disposed on a second surface of the substrate and includes at least one light sensor corresponding to the opening portion. The opening portion is defined by non-overlapping of the semiconductor layer and the conductive layers, the opening portion has a closed loop shape in plan view, and at least a portion of the closed loop shape includes a curve, or an internal angle of the at least a portion of the closed loop shape is an obtuse angle.
Abstract:
A touch sensing unit includes first touch electrodes and second touch electrodes disposed on in a touch sensor area which includes a round portion having a curvature. A driving line is connected to a first touch electrode among the first touch electrodes are disposed in the round portion of the touch sensor area. A sensing line is connected to a second touch electrode among the second touch electrodes disposed in the round portion of the touch sensor area. The driving line and the sensing line intersect each other.
Abstract:
A display device includes a display pixel and a sensor pixel. The display pixel includes a light-emitting element including a first pixel electrode. The display pixel further includes a pixel circuit electrically coupled to the light-emitting element. The sensor pixel includes a sensor electrode overlapping the first pixel electrode. The sensor pixel further includes a sensor circuit electrically coupled to the sensor electrode. The first pixel electrode includes a first opening in a region overlapping the sensor electrode.