Abstract:
A heterocyclic compound is represented by Formula 1. An organic light emitting device includes a first electrode, a second electrode and an organic layer between the first and second electrodes. The organic layer includes the heterocyclic compound. An organic light-emitting display apparatus includes the organic light-emitting device and a transistor including a source, a drain, a gate and an active layer. The source or the drain is electrically connected to the first electrode of the organic light-emitting device.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 to R12 are defined as in the specification.
Abstract:
An organometallic compound and an organic light-emitting diode (OLED) including the organometallic compound are provided. In exemplary embodiments, the organometallic compound is a platinum complex comprising one or two heterocyclic ligands, the heterocyclic ligands being the same or different if they are two in number, each heterocyclic ligand comprising two nitrogen heterocyclic rings connected by a single bond, one of the rings being six membered and comprising at least one nitrogen and the other ring being a 1,2-diazole or a 1,2,4-triazole ring. One or two other organic ligands may be attached to the central platinum atom in the complex. OLEDs including one of the subject platinum compounds in a light emission layer exhibit lower driving voltages, higher luminances, higher efficiencies and longer lifetimes than do comparative OLEDs built with established dopants incorporated into the light emitting layers.
Abstract:
A heterocyclic compound represented by Formula 1 below, and an organic light-emitting device including the heterocyclic compound: whrerein X1 and R1 to R10 are defined as in the specification.