Abstract:
A Filter Bank Multicarrier (FBMC) modulation-based signal transmitting method includes mapping, by a transmitter, an original Data Block (DB) with at least one symbol to a first Resource Block (RB), preprocessing the original DB, and mapping the preprocessed original DB to a second RB. modulating, by the transmitter, data of the first RB and the second RB by using a FBMC modulation, and, transmitting, by the transmitter, the data modulated. A transmitter, comprising a mapping module, a modulating module and a transmitting module, wherein the mapping module is to map an original DB with at least one symbol to a first resource block (RB), preprocess the original DB, and map the preprocessed original DB to a second RB, the modulating module is to modulate data of the first RB and the second RB, by using FBMC modulation, and, the transmitting module is to transmit the data modulated.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).The present disclosure discloses a method for obtaining channel direction information, which includes: transmitting a first detection signal and a second detection signal in at least one detection region, wherein there is differential information between the first detection signal and the second detection signal; receiving a signal receiving characteristic of the first detection signal and a signal receiving characteristic of the second detection signal from a receiver; and adjusting channel direction information (CDI) according to the signal receiving characteristic of the first detection signal and the signal receiving characteristic of the second detection signal. The present disclosure further discloses an apparatus for obtaining channel direction information.
Abstract:
The present disclosure provides a method for performing non-orthogonal communication by a terminal in a wireless communication system, the method including: monitoring scheduling signaling; receiving a multi-layer signal in non-orthogonal transmission according to the monitored scheduling signaling and demodulating the multi-layer signal if non-orthogonal transmission exists; and calculating and feeding back channel state information applied to the non-orthogonal transmission.