Abstract:
A method and an apparatus for transmitting a reference signal. A first reference signal is generated according to a data signal, an interference relationship between adjacent carriers, and a predefined second reference signal. The data signal and the first reference signal is modulated and sent on a corresponding carrier utilizing non-orthogonal multi-carrier modulation waveform. A method for receiving a reference signal includes receiving, on a reference signal carrier, a first reference signal modulated utilizing non-orthogonal multi-carrier modulation waveform, processing the received first reference signal using a predefined processing method, performing channel estimation or synchronization according to a result of the processing and a predefined second reference signal.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). Various examples of the present disclosure provide a method of allocating sounding reference signal (SRS) resources. A base station of a target cell receives information of first cell edge terminals in an adjacent cell transmitted by the adjacent cell. The base station allocates SRS resources for a terminal in the target cell according to information of second cell edge terminals in the target cell and the information of the first cell edge terminals, and transmits information of the allocated SRS resources to the terminal. According to the mechanism, when there are cell edge terminals in both the target cell and the adjacent cell, it can be guaranteed that all SRS resources allocated to cell edge devices in the target cell are orthogonal to those allocated to cell edge devices in the adjacent cell. Thus, the impact of pilot contamination on system performances may be remarkably reduced.
Abstract:
A method and an apparatus for transmitting a reference signal. A first reference signal is generated according to a data signal, an interference relationship between adjacent carriers, and a predefined second reference signal. The data signal and the first reference signal is modulated and sent on a corresponding carrier utilizing non-orthogonal multi-carrier modulation waveform. A method for receiving a reference signal includes receiving, on a reference signal carrier, a first reference signal modulated utilizing non-orthogonal multi-carrier modulation waveform, processing the received first reference signal using a predefined processing method, performing channel estimation or synchronization according to a result of the processing and a predefined second reference signal.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). Various examples of the present disclosure provide a method of allocating sounding reference signal (SRS) resources. A base station of a target cell receives information of first cell edge terminals in an adjacent cell transmitted by the adjacent cell. The base station allocates SRS resources for a terminal in the target cell according to information of second cell edge terminals in the target cell and the information of the first cell edge terminals, and transmits information of the allocated SRS resources to the terminal. According to the mechanism, when there are cell edge terminals in both the target cell and the adjacent cell, it can be guaranteed that all SRS resources allocated to cell edge devices in the target cell are orthogonal to those allocated to cell edge devices in the adjacent cell. Thus, the impact of pilot contamination on system performances may be remarkably reduced.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).The present disclosure discloses a method for obtaining channel direction information, which includes: transmitting a first detection signal and a second detection signal in at least one detection region, wherein there is differential information between the first detection signal and the second detection signal; receiving a signal receiving characteristic of the first detection signal and a signal receiving characteristic of the second detection signal from a receiver; and adjusting channel direction information (CDI) according to the signal receiving characteristic of the first detection signal and the signal receiving characteristic of the second detection signal. The present disclosure further discloses an apparatus for obtaining channel direction information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).The present disclosure discloses a method for obtaining channel direction information, which includes: transmitting a first detection signal and a second detection signal in at least one detection region, wherein there is differential information between the first detection signal and the second detection signal; receiving a signal receiving characteristic of the first detection signal and a signal receiving characteristic of the second detection signal from a receiver; and adjusting channel direction information (CDI) according to the signal receiving characteristic of the first detection signal and the signal receiving characteristic of the second detection signal. The present disclosure further discloses an apparatus for obtaining channel direction information.