摘要:
An active plate for a liquid crystal display has an insulating layer (76) arranged as a plurality of columns, each insulating layer column overlapping the pixel electrodes (12) of two adjacent columns of pixels. An opaque conductor layer is formed over the substrate and patterned to define column conductors (34) on top of the insulating layer, and source and drain electrodes for the transistor on top of thin film transistor layers (66). Thus, an insulating layer (76) is defined beneath the column conductors (34), so that it lies between the crossing row and column conductors. In addition, the columns of insulating layer (76) overlap adjacent pairs of pixel electrodes (12), so that the column conductors can overlap the pixel electrodes, thereby increasing the pixel aperture. The transparent pixel electrodes (12) are, however, the first layer to be deposited. This gives advantages in process simplification and corresponding cost reduction for manufacture of high quality active matrix LCD (AMLCD) displays.
摘要:
A system and method for heat treating castings and removing sand cores therefrom. The castings are initially located in indexed positions with their x, y, and z coordinates known. The castings are passed through a heat treatment station typically having a series of nozzles mounted in preset positions corresponding to the known indexed positions of the castings passing through the heat treatment station. The nozzles apply heat to the castings for heat treating the castings and dislodging the sand cores for removal from the castings.
摘要:
A method of manufacturing a thin film electronic device comprises applying a first plastic coating (PI-1) directly to a rigid carrier substrate (40) and forming thin film electronic elements (44) over the first plastic coating. A second plastic coating (46) is applied over the thin film electronic elements with electrodes (47) on top, with a portion lying directly over the associated electronic element, spaced by the second plastic coating. The rigid carrier substrate (40) is released from the first plastic coating, by a laser release process. This method enables traditional materials to be used as the base for the electronic element manufacture, for example thin film transistors. The second plastic coating can form part of the known field shielded pixel (FSP) technology.
摘要:
A method of manufacturing a thin film electronic device comprises applying a first plastic coating (PI-1) directly to a rigid carrier substrate (40) and forming thin film electronic elements (44) over the first plastic coating. A second plastic coating (46) is applied over the thin film electronic elements with electrodes (47) on top, with a portion lying directly over the associated electronic element, spaced by the second plastic coating. The rigid carrier substrate (40) is released from the first plastic coating, by a laser release process. This method enables traditional materials to be used as the base for the electronic element manufacture, for example thin film transistors. The second plastic coating can form part of the known field shielded pixel (FSP) technology.
摘要:
Device for the controlled release of a predefined quantity of a substance and method for the production of a device for the controlled release of a predefined quantity of a substance. To realize a controlled delivery of a substance based upon a multiplicity of individual compartments, the reservoirs are formed in plastic substrates that allow the substance delivery device to be flexible and conformal with both internal and external body parts. The fabrication technology for the plastic drug release reservoirs is compatible with active matrix array technology, allowing control of delivery to be based upon active matrix principles. Applications are for controlled external drug delivery (patches), implantable drug delivery and oral drug delivery (electronic pill).
摘要:
A moving particle display device comprises an array of rows and columns of display pixels (41,42,43,44), a plurality of row address lines (Row1,Row2;72; 112), each row address line for addressing a respective row of pixels and a plurality of column address lines (Col1,Col2;76; 108), each for providing pixel data to a respective column of pixels. A plurality of discharge column lines (82) is provided. A pixel is addressed by addressing a row of pixels and providing data to the pixels in the addressed row using the column address lines (Col1,Col2;76; 108). A charge flow from a column address line to an addressed pixel in the column flows to a respective discharge column line (82). By having discharge lines in the column direction, when a row of pixels is addressed, a current flow through the pixel, which is used to load data into the pixel from a column address line, passes to a column discharge line. In this way, the column discharge line only carries a current flow associated with a small number of pixels from the row. This enables the width of the discharge lines to be kept to a minimum, and it also enables the number of pixels in a row to be scaled without requiring the discharge line to carry an increased current.
摘要:
An integrated metal processing facility in which molten metal is poured into a series of molds at a pouring station to form metal castings, which are then transferred to a heat treatment line. Prior to introduction of the castings into a heat treatment station of the heat treatment line, the castings are subjected to heating sufficient to arrest cooling of the castings at or above a process control temperature for the metal thereof.
摘要:
A method of manufacturing an active matrix display device involves manufacturing a first substrate arrangement comprising a rigid glass substrate and an overlying plastic substrate. Pixel circuits are formed over the plastic substrate. The rigid glass substrate (12) is only removed from the plastic substrate after the mounting of the active and passive plates of the display into display modules (10). This method enables substantially conventional substrate handling, processing and cell making to be employed, for example in standard AMLCD factories, with only minimal extra equipment needed. A more general manufacturing method is also disclosed for fabricating TFTs on a spin-on plastic layer.