Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
Abstract:
Devices having an air bearing surface (ABS), the devices include a write pole; a near field transducer (NFT) including a peg and a disc, wherein the peg is at the ABS of the device; an overcoat, the overcoat including a low surface energy layer.
Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
Abstract:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a carbon interlayer positioned between the NFT and the at least one cladding layer.
Abstract:
A method including depositing a plasmonic material at a temperature of at least 150° C.; and forming at least a peg of a near field transducer (NFT) from the deposited plasmonic material.
Abstract:
Devices having air bearing surfaces (ABS), the devices include a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the disc material has a first real part of the permittivity and a peg material has a second real part of the permittivity and the second real part of the permittivity is not greater than the first real part of the permittivity.
Abstract:
Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg, and a method of forming NFT thereof.
Abstract:
A device that includes a near field transducer (NFT), the NFT having a disc and a peg, and the peg having an air bearing surface thereof; and at least one adhesion layer positioned on at least the air bearing surface of the peg, the adhesion layer including one or more of platinum (Pt), iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), yttrium (Y), chromium (Cr), nickel (Ni), and scandium (Sc).
Abstract:
Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
Abstract:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a carbon interlayer positioned between the NFT and the at least one cladding layer.