Abstract:
Certain aspects of the present disclosure provide a technique for bundling the received service data units (SDU) in a first communication layer to generate a protocol data unit (PDU) to pass to a second communication layer. For example, one or more packet data convergence protocol (PDCP) SDUs may be concatenated to generate a PDCP PDU and be sent to a radio link control (RLC) layer in the transmitter side. Similarly, one or more PDCP SDUs may be extracted from a PDCP PDU in the receiver side.
Abstract:
Systems and methodologies are described that facilitate unbundling and processing partial packet data units (PDU). PDUs can be transmitted at a communication layer and can include partial PDUs of a disparate communication layer. Complete SDUs can be determined in the partial PDU and provided to an upper communication layer. In addition, however, the partial PDU can comprise a partial SDU. Upon receiving a remaining or additional portion of the partial PDU, a remaining or additional portion of the partial SDU can be combined with the partial SDU to create a complete SDU (or a larger portion thereof). Where a complete SDU is created, it can be provided to an upper communication layer. Alternatively, the partial PDU can be combined with the remaining portion of the partial PDU to generate a complete or larger PDU, from which the previously incomplete SDU can be retrieved and provided to an upper communication layer.
Abstract:
The apparatus and methods described herein are used to provide a communication quality feedback of an end-to-end communication path between an application transmitter and an application receiver. One method includes transmitting data from the application transmitter to the application receiver via the end-to-end communication path, the end-to-end communication path having at least one wireless link with a wireless transmitter and a wireless receiver, generating, at the wireless transmitter, a first communication quality feedback message, and transmitting the first communication quality feedback message from the wireless transmitter to the application transmitter in a standardized format.
Abstract:
Methods and apparatus which reduce or completely eliminate non-shift based divisions as part of estimating transmitted symbols and/or generating slicing parameters corresponding to two symbol transmission streams in a wireless communication system are described. A linear least squares error estimation filtering module performs symbol estimations and/or slicing parameter generation while avoiding non-shift based division operations. The linear least squares estimation module generates intermediate parameters, and implements equations which facilitate symbol estimation utilizing shift based divisions while avoiding non-shift based divisions.
Abstract:
Certain aspects of the present disclosure relate to a technique of designing a Media Access Control (MAC) scheduler for uplink communication in high rate wireless data systems, such as Long Term Evolution (LTE) wireless communication systems.
Abstract:
Methods and apparatus for avoiding overflow and underflow conditions through the determination of appropriate scaling factors in signal estimation processing in a receiver are described. The receiver estimates transmitted symbols from one or more transmitter device antennas, while avoiding underflow and overflow conditions. A pilot based noise estimate and an estimated expected received signal power, corresponding to a transmit antenna, are used to generate an SNR corresponding to the transmit antenna. The generated SNR is used to determine, e.g., select from a fixed size set of predetermined scale factor values, a scale factor to be used for estimation processing associated with the transmit antenna. In some embodiments, the generated scaling factors are used by a fixed point processing linear least squares error estimation module. Scaling factor determination is performed at a rate which is slower than the rate at which symbols are received from a transmit antenna.
Abstract:
Systems and methodologies are described that facilitate dividing scheduling algorithms into background and foreground aspects capable of simultaneously servicing a multiplicity of disparate flows in wideband communications networks. The systems provided herein arbitrarily select prospective time horizons, generate optimal bandwidth allocation targets based on a plurality of flows observed by the system, and utilizes the optimal bandwidth targets to assign flows to users over the entirety of the prospective time horizon.
Abstract:
Methods and apparatus for contention-based access in a wireless communication system are disclosed. A base station may determine a contention-based resource allocation comprising a subset of available system resources. Information related to the contention-based resources may be sent to a user device. In addition, state information may be provided to the UE. The UE may generate and send a contention-based uplink transmission consistent with the allocated resources and state information.
Abstract:
Channel estimates respectively associated with OFDM pilot symbols are used to estimate additional parameters such as change in channel phase over time, change in channel phase over frequency, and frequency selectivity.
Abstract:
Certain aspects of the present disclosure propose techniques for bundling and ciphering service data units (SDU) in the packet data convergence protocol (PDCP) layer. The proposed techniques increase the data rate of the communication system. At the transmitter side, the PDCP layer may bundle SDUs and cipher each SDU individually before submitting them to a lower layer. At the receiver-side, the PDCP layer may unbundle and decipher the SDUs before submitting them to higher layers.