Abstract:
A method of predicting an amount of power that will be generated by a solar power plant at a future time includes: forecasting a value of a data variable at the future time that is likely to affect the ability of the solar power plant to produce electricity (S301); computing a plurality of features from prior observed amounts of power generated by the power plant during different previous durations (S302); determining a trending model from the computed features and the forecasted value (S303); and predicting the amount of power that will be generated by the power plant at the future time from the determined model (S304).
Abstract:
System and method for performing natural language processing are disclosed. An encoder includes a multi-head attention block for nonlinear transformation of inputs and a feed-forward network for learning parameters that result in best function approximation. Output of the multi-head attention block and the feed-forward network are coupled in parallel to produce a summed output. An ODE solver performs continuous depth integration of the summed output for reduced number of parameters.
Abstract:
A computer-implemented method of scheduling jobs for an industrial process includes receiving jobs to be executed on machines within a manufacturing facility. A job schedule is generated based on an optimization function that minimizes total energy cost for all the machines during a time horizon based on a summation of energy cost at each time step between a start time and an end time. The energy cost at each time step is a summation of (a) a first energy cost associated with each machine in sleeping mode during the time step, (b) a second energy cost associated with each machine in stand-by mode during the time step, and (c) a third energy cost associated with each machine in processing mode during the time step. The jobs are executed on the machines based on the job schedule.
Abstract:
A method for training a deep learning network includes defining a loss function corresponding to the network. Training samples are received and current parameter values are set to initial parameter values. Then, a computing platform is used to perform an optimization method which iteratively minimizes the loss function. Each iteration comprises the following steps. An eigCG solver is applied to determine a descent direction by minimizing a local approximated quadratic model of the loss function with respect to current parameter values and the training dataset. An approximate leftmost eigenvector and eigenvalue is determined while solving the Newton system. The approximate leftmost eigenvector is used as negative curvature direction to prevent the optimization method from converging to saddle points. Curvilinear and adaptive line-searches are used to guide the optimization method to a local minimum. At the end of the iteration, the current parameter values are updated based on the descent direction.
Abstract:
A method for solar forecasting includes receiving a plurality of solar energy data as a function of time of day at a first time, forecasting from the solar energy data a mode, where the mode is a sunny day, a cloudy day, or an overcast day, and the forecast predicts the mode for a next solar energy datum, receiving the next solar energy datum, updating a probability distribution function (pdf) of the next solar energy datum given the mode, updating a pdf of the mode for the next solar energy datum from the updated pdf of the new solar energy datum given the mode, forecasting a plurality of future unobserved solar energy data from the updated pdf of the mode, where the plurality of future unobserved solar energy data and the plurality of solar energy data have a Gaussian distribution for a given mode determined from training data.
Abstract:
A method and system for generating a high-level language (i.e., PDF) report with embedded 3D objects. The report is prepared by using an XML template where selected 3D objects are imported into the template and enabled to be activated and manipulated by persons viewing the report, without the need to utilize vendor-specific 3D software. The XML template supports various types of 3D models from various data sources, such as engineering CAD models, medical volumetric data, etc. A specific XML fragment in the template is configured to allow for a 3D object (created using any type of software system) to be imported in “active” form to the document being created. Once the actual PDF report is generated, it may be distributed to various recipients who are then able to manipulate the 3D object(s).
Abstract:
Reference data from sensors measuring characteristics of a gas turbine are analyzed to identify underperformance of the gas turbine, which may be a predictor of an unscheduled shutdown. Time series data from the sensors are compared to annotated query data using an open-begin-end dynamic time warping algorithm. Identified subsequences are examined as possible underperformance indicators. In a related technique, multiple time series from the sensors are pairwise compared using a dynamic time warping algorithm, and computed distances between the time series are used to group the time series using a hierarchical clustering algorithm. The clusters are examined to identify underperformance indicators.
Abstract:
NOx generation in a coal burning furnace is estimating using a chemical reactor network model. The model is constructed with ideal chemical reactor modules, an input matrix and a tunable parameter matrix defining split ratios and flow rates among the ideal chemical reactor modules. Values in the tunable parameter matrix are learned by first measuring actual furnace outputs of the coal burning furnace for a known set of actual furnace inputs, and then applying the chemical reactor network, including an initially populated tunable parameter matrix, to a populated input matrix representing the known set of actual furnace inputs. The actual furnace outputs are compared with the output matrix, and the tunable parameter matrix is adjusted based on the comparison.
Abstract:
System and method for modeling motion and collision of rigid bodies in a dynamic system includes a collision detector that detects active contacts of the rigid bodies. A differentiable contact impulse solver applies constraints on contact forces related to a compression phase, applies coefficient of restitution on contact forces related to a restitution phase, solves for contact forces and velocity impulses associated with the active contacts in the compression phase and the restitution phase, and estimates trajectories of the rigid bodies while optimizing for maximum rate of energy dissipation.
Abstract:
Systems, techniques, and computer-program products are provided to generate synthetic time series using a generative adversarial network. In some embodiment a technique includes configuring a first neural network having a first function representative of an output of the first neural network, and configuring a second neural network having a second function representative of an output of the second neural network. In addition, such a technique includes generating a generative adversarial network by solving an optimization problem with respect to an objective function based at least on the first function and the second function. The generative adversarial network includes a discriminator neural network and a generator neural network. A synthetic time series can be generated using at least the generator neural network.