Abstract:
An electronic device with fingerprint recognition circuit powered by dedicated power source includes a functional circuit, a plurality of fingerprint sensing electrodes, and a fingerprint sensing control circuit. The functional circuit is powered by a first power source. The fingerprint sensing electrodes are provided for sensing a contact of a finger. The fingerprint sensing control circuit is powered by a second power source which is different from the first power source. The fingerprint sensing control circuit is connected to the fingerprint sensing electrodes for driving the fingerprint sensing electrodes to sense the fingerprint, wherein there is no common current loop between the first power source and the second power source during an operation of fingerprint sensing.
Abstract:
A combinational sensing type fingerprint identification device includes plural sensing electrodes; plural sensing electrode switches; plural first sensed signal connection lines, and a controller. Each sensing electrode switch corresponds to one sensing electrode and has a first terminal, a second terminal connected to a common signal, a third terminal connected to a corresponding sensing electrode, and a control terminal Each first sensed signal connection line is connected to the first terminals of the sensing electrode switches in one column. The controller is connected to the control terminal of each sensing electrode switch for controlling whether the sensing electrode switches are electrically connected to the common signal or corresponding first sensed signal connection lines. The controller configures the control terminals of the sensing electrode switches for allowing a part of the sensing electrodes to be electrically connected to the corresponding first sensed signal connection lines.
Abstract:
A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
Abstract:
A rapid identification method for fingerprint first provides a fingerprint identification apparatus having a fingerprint sensing area and divides the fingerprint sensing area into fingerprint sensing sub-regions. In a registration stage, the method performs fingerprint sensing for the entire fingerprint sensing area to obtain fingerprint image for a whole fingerprint sensing area, fingerprint minutiae and relevant locations for the fingerprint minutiae and then pre-stores those data. In an identification stage, the method performs fingerprint sensing on a part of the fingerprint sensing sub-regions for a user to be identified and detects fingerprint minutiae and relevant locations for the fingerprint minutiae in the part of the fingerprint sensing sub-regions. The method compares the fingerprint minutiae and relevant locations detected in the identification stage with respect to the corresponding fingerprint minutiae and relevant locations in the registration stage in order to determine whether the user can be granted with access right.
Abstract:
A curved-surface OLED display device with fingerprint identification includes a substrate, a thin film transistor layer, a pixel electrode layer, an OLED display material layer, a common electrode layer, an encapsulation layer, a curved touch detection and fingerprint detection layer and a curved protective layer. The thin film transistor layer includes plural thin film transistors, plural scan lines, and plural data lines. The pixel electrode layer includes plural pixel electrodes. The curved touch detection and fingerprint detection layer includes plural sense electrodes and plural traces for performing the touch detection operation and fingerprint identification operation. A partial area of the curved touch detection and fingerprint detection layer and the curved protective layer exhibits a curved-surface shape.
Abstract:
A fingerprint identification apparatus includes a substrate, a second electrode layer, and a first electrode layer. The first electrode layer includes parallel first electrodes, and at least parts of the first electrodes have openings or dents. The second electrode layer includes parallel second electrodes and the second electrodes cross with the first electrodes on the substrate, where the openings or the dents are defined at the cross points from projected view. The second electrode is applied with transmitting signal and the corresponding electric field lines are received by the first electrode. The electric field lines detouring the edges of the first electrodes, or detouring the openings (or the dents) have induction with the finger close to or touching the first electrodes. The number of the effective electric field lines and the effective mutual capacitance changes can be increased to enhance the fingerprint sensing accuracy.
Abstract:
A mutual-capacitance organic light emitting touch display apparatus includes a thin film transistor substrate, a common electrode layer, an organic light emitting material layer, and at least a touch electrode layer, including a plurality of first touch electrodes arranged along a first direction, and a plurality of second touch electrodes arranged along a second direction; a thin film encapsulation layer; a display controller having a display power source, and electrically connected to a thin film transistor, a pixel electrode and the common electrode layer of the thin film transistor substrate; and a touch controller including a touch power source. The touch controller applies a touch driving signal to a selected first touch electrode, and senses a touch sensing signal at a second touch electrode, and outputs the touch sensing signal to the common electrode layer or a reference point of the display controller by a non-inverting amplifier.
Abstract:
An interference-free fingerprint identification device includes a TFT substrate, a TFT layer having plural TFTs, a sensing electrode layer having plural fingerprint sensing electrodes, a gate line layer having plural gate lines, a data line layer having plural data lines, and a first shielding layer. Each fingerprint sensing electrode corresponds to a plurality of the TFTs, and is connected to sources or drains of at least two corresponding TFTs. At least two gate lines are electrically connected to gates of a plurality of the TFTs corresponding to a fingerprint sensing electrode. Each data line is electrically connected to a source or drain of a TFT in a plurality of the TFTs corresponding to a fingerprint sensing electrode. The first shielding layer is electrically connected to a source or drain of a TFT in a plurality of the TFTs corresponding to each fingerprint sensing electrode.
Abstract:
An integral sensing apparatus for touch and force sensing includes a touch electrode layer having first touch electrodes and second touch electrodes arranged, a protection layer arranged on one side of the touch electrode layer, a force electrode layer having at least one force sensing electrode, a resilient dielectric layer arranged between the touch electrode layer and the force electrode layer, and a capacitance sensing module. In touch sensing operation, the capacitance sensing module sequentially or randomly sends a touch driving signal to selected ones of the second touch electrodes, and sequentially or randomly receives a touch sensing signal from selected ones of the first touch electrodes. In force sensing operation, the capacitance sensing module sends a force capacitance-exciting signal to the at least one force sensing electrode and obtains a force sensing signal from the force sensing electrode.
Abstract:
A fingerprint identification apparatus includes a fingerprint identification IC chip, a polymer film substrate and a decorative layer. The fingerprint identification IC chip comprises a plurality of metal bumps arranged on one side of the fingerprint identification IC chip. The polymer film substrate comprises a plurality of conductive pads and arranged on one side of the fingerprint identification IC chip with the metal bumps. At least part of the conductive pads is corresponding to and electrically connected to the metal bumps. The decorative layer is arranged on one side of the polymer film substrate opposite to the fingerprint identification IC chip.