Abstract:
In one aspect, methods of making a carbon coating are described herein. In some implementations, a method of making a carbon coating comprises applying a first adhesive material to a substrate surface to provide an adhesive surface; rolling a carbon source over the adhesive surface to provide a carbon layer on the adhesive surface; and rolling an adhesive roller over the carbon layer to remove some but not all of the carbon of the carbon layer to provide the carbon coating.
Abstract:
A nanotube particle device for two dimensional and three dimensional printing or additive/subtractive manufacturing. The nanotube particle device comprising a nanotube, a particle shooter, a positioning mechanism, and a detection sensor. The particle shooter shoots a particle down the nanotube towards a target, the detection sensor senses the collision of the particle with the target, and the positioning mechanism re-adjusts the positioning of the nanotube based on the results of the collision. A method for aiming the particle shooter and additive/subtractive manufacturing are also disclosed and described.
Abstract:
In one aspect, thermally managed electronic components are described herein. In some implementations, a thermally managed electronic component comprises an electronic component and a thermal management coating disposed on a surface of the electronic component. The thermal management coating comprises a graphene coating layer disposed on the surface of the component. The graphene coating layer may comprise a layer of aligned carbon nanoparticles. Moreover, the thermal management coating may further comprise an additional layer of aligned carbon nanoparticles disposed on the graphene coating layer. In another aspect, methods of applying a thermal management coating on an electronic component are disclosed. In some implementations, such a method comprises disposing a graphene coating layer on a surface of an electronic component. The graphene coating layer may comprise a layer of aligned carbon nanoparticles. Such a method may further comprise disposing an additional layer of aligned carbon nanoparticles on the graphene coating layer.
Abstract:
In one aspect, methods of making a carbon coating are described herein. In some implementations, a method of making a carbon coating comprises applying a first adhesive material to a substrate surface to provide an adhesive surface; rolling a carbon source over the adhesive surface to provide a carbon layer on the adhesive surface; and rolling an adhesive roller over the carbon layer to remove some but not all of the carbon of the carbon layer to provide the carbon coating.