Abstract:
A liquid crystal display having a wide viewing angle and easily manufactured. The liquid crystal display comprises an upper substrate and a lower substrate, and a liquid crystal material disposed between the upper substrate and the lower substrate. The liquid crystal display has a conductive protrusion disposed on the surface of the upper substrate opposing to the lower substrate. The conductive protrusion is disposed over a scanning electrode line or a signal electrode line and has the same potential as that of the upper electrode. As another structure, each of pixel electrodes on the lower substrate has a smaller area than that of a common electrode on the upper substrate and is covered by the common electrode, and each of the pixel electrodes comprises an electrode portion having approximately symmetrical shape.
Abstract:
A liquid crystal display device includes a liquid crystal cell, first and second polarizers disposed outside the liquid crystal cell, first and second retardation plates arranged between the first and second polarizers, and the liquid crystal cell, and optical layers arranged between the first and second retardation plates and the liquid crystal cell. The first and second retardation plates have lagging axes perpendicular with each other. The first polarizer has an absorption axis inclining by about 45 degrees relative to the lagging axis of the first retardation plate, and inclining by about 90 degrees relative to an absorption axis of the second polarizer. The absorption axes of the first and second polarizers are angularly deviated such that characteristic of a viewing angle in the liquid crystal display device is rendered symmetric, relative to a symmetry axis about which liquid crystal is aligned in different directions.
Abstract:
A reflection liquid crystal display is such that a transparent substrate is opposed to the first substrate with a liquid crystal layer placed therebetween, and the transparent substrate is disposed forward to the first substrate in the light-incident direction. A quarter-wavelength plate is disposed in the transparent substrate, and a polarization plate is disposed on the surface at the forward side thereof in the light-incident direction. And, a reflection layer besides acting as a color filter consisting of a cholesteric liquid crystal is disposed inside liquid crystal cells of the first substrate. In the case of a wide field-of-view angle, a scattering film is disposed forward to the polarization plate in the light-incident direction.
Abstract:
A picture electrode of an MVA liquid crystal display device has a configuration where sub-picture electrodes are successively provided, while a cross-shaped slit is provided as an alignment restriction member on a common electrode of the side of a counter substrate. A columnar spacer is provided on a signal line of a TFT substrate in conformity to a position of a singular point of an alignment of liquid crystal molecules, the singularity occurring in a display region. This structure makes it possible, when a panel surface is depressed, to cause quick re-aligning of the liquid crystal molecules at the singular point of +1, as a base point, which has occurred at a center of the cross-shaped slit and in the vicinity of the columnar spacer, hence achieving a speedy recovery of displaying.
Abstract:
A ferroelectric liquid crystal display includes a pair of first and second substrates placed substantially in parallel to each other to form a space between the first and second substrates so that a ferroelectric liquid crystal is provided in the space between the first and second substrates, wherein the ferroelectric liquid crystal is isolated into co-existent separate orientation regions that have crystal orientations which differ by 90 degrees from each other in initial orientation direction of an optical axis of ferroelectric liquid crystal molecules when no electric field is applied to the ferroelectric liquid crystal immediately after the ferroelectric liquid crystal has been injected into the space between the first and second substrates.
Abstract:
A liquid crystal display having a wide viewing angle and easily manufactured. The liquid crystal display comprises an upper substrate and a lower substrate, and a liquid crystal material disposed between the upper substrate and the lower substrate. The liquid crystal display has a conductive protrusion disposed on the surface of the upper substrate opposing to the lower substrate. The conductive protrusion is disposed over a scanning electrode line or a signal electrode line and has the same potential as that of the upper electrode. As another structure, each of pixel electrodes on the lower substrate has a smaller area than that of a common electrode on the upper substrate and is covered by the common electrode, and each of the pixel electrodes comprises an electrode portion having approximately symmetrical shape.
Abstract:
This invention provide a liquid crystal display comprising a liquid crystal layer between two substrates each of which has an electrode, wherein the liquid crystal layer concomitantly has at least two micro-regions, and the electrode on one of the substrates has an opening, in the region of which there is provided a second electrode for controlling the initial orientation of the liquid crystal. The liquid crystal display has improved properties such as high contrast, quick response and excellent properties for an angle of visibility and can be manufactured without troublesome steps such as a photoresist step.
Abstract:
A ferroelectric liquid crystal display includes a pair of first and second substrates placed substantially in parallel to each other to form a space between the first and second substrates so that a ferroelectric liquid crystal is provided in the space between the first and second substrates, wherein the ferroelectric liquid crystal is isolated into coexistent separate orientation regions that have crystal orientations which differ by 90 degrees from each other in initial orientation direction of an optical axis of ferroelectric liquid crystal molecules when no electric field is applied to the ferroelectric liquid crystal immediately after the ferroelectric liquid crystal has been injected into the space between the first and second substrates.