-
公开(公告)号:US12103187B2
公开(公告)日:2024-10-01
申请号:US17516729
申请日:2021-11-02
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Yizhang Liu , Hongge Wang , Jie Bai , Zheng Xie , Jiangchen Zhou , Meihui Zhang , Shuo Zhang , Youjun Xiong
IPC: B25J9/16 , B62D57/032 , G05D1/43 , G05D1/622 , G05D1/644 , G05D109/12
CPC classification number: B25J9/1666 , B62D57/032 , G05D1/43 , G05D1/637 , G05D1/644 , G05D2109/12
Abstract: A path planning method and a biped robot using the same are provided. The method includes: generating a candidate node set for a next foot placement based on a biped robot's own parameters and joint information of a current node, adding valid candidate nodes in the candidate node set to a priority queue so as to select optimal nodes for realizing next node expansion. These optimal nodes are output to generate a foot placement sequence from an initial node to a target node, which can greatly reduce the search amount for path nodes when the robot's legs intersect and touch the ground, thereby improving the efficiency of path planning.
-
公开(公告)号:US12053885B2
公开(公告)日:2024-08-06
申请号:US17561629
申请日:2021-12-23
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Ligang Ge , Yizhang Liu , Chunyu Chen , Zheng Xie , Youjun Xiong
IPC: B25J9/16 , B62D57/02 , B62D57/032 , G05D1/08
CPC classification number: B25J9/1602 , B25J9/1633 , B62D57/02
Abstract: A robot control method includes: determining a planned capture point and a measured capture point of the robot so as to calculate a capture point error of the robot; obtaining positions of a left foot and a right foot of the robot, and a planned zero moment point (ZMP) of the robot so as to calculate desired support forces of the left foot and the right foot; calculating desired torques of the left foot and the right foot according to the capture point error, the desired support forces of the left foot and the right foot; obtaining measured torques of the left foot and the right foot so as to calculate desired poses of the left foot and the right foot; and controlling the robot to walk according to the desired poses of the left foot and the desired pose of the right foot.
-
公开(公告)号:US20230415354A1
公开(公告)日:2023-12-28
申请号:US18243665
申请日:2023-09-08
Applicant: UBTECH ROBOTICS CORP LTD.
Inventor: ZHONGKUI HUANG , Ming Chen , Qixiang Luo , Hongyu Ding , Zheng Xie , Wenhua Fan
CPC classification number: B25J15/0009 , B25J15/022 , B25J15/12
Abstract: A linkage mechanism includes: a base member; a first link rotatably connected to the base member, the first link defining a first arc-shaped guide groove centered on a pivot axis about which the first link rotates relative to the base member; a second link rotatably connected to the first link; a connecting member rotatably connected to the base member and the second link; an actuating mechanism including a linear actuator and a transmission member that is driven by the linear actuator, the transmission member having a first end rotatably connected to the output shaft, and a second end slidably received in the first arc-shaped guide groove. When the linear actuator drives the connecting member to extend and move, the second end of the transmission member abuts against one end of the first arc-shaped guide groove, which drives the first link to rotate relative to the base member.
-
公开(公告)号:US20230415333A1
公开(公告)日:2023-12-28
申请号:US18210026
申请日:2023-09-19
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Ligang Ge , Yizhang Liu , Chunyu Chen , Zheng Xie , Youjun Xiong
IPC: B25J9/16 , G05B19/4155
CPC classification number: B25J9/1602 , G05B19/4155 , G05B2219/40244
Abstract: A center of mass (COM) planning method includes: obtaining a planning position of the COM and a planning speed of the COM of a robot, and calculating a planning capture point of the robot according to the planning position of the COM and the planning speed of the COM; obtaining a measured position of the COM and a measured speed of the COM, and calculating a measured capture point of the robot according to the measured position the measured speed; calculating a desired zero moment point (ZMP) of the robot based on the planning capture point and the measured capture point; obtaining a measured ZMP of the robot, and calculating an amount of change in a position of the COM according to the desired ZMP and the measured ZMP; and correcting the planning position of the COM according to the amount of change in the position of the COM.
-
公开(公告)号:US11833692B2
公开(公告)日:2023-12-05
申请号:US17115712
申请日:2020-12-08
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Dake Zheng , Yizhang Liu , Zheng Xie , Jianxin Pang , Youjun Xiong
IPC: B25J9/16 , G05B19/4155 , B25J13/08
CPC classification number: B25J9/1666 , B25J9/1605 , B25J9/1643 , G05B19/4155 , B25J13/08 , G05B2219/40269
Abstract: The present disclosure provides a method for controlling an arm of a robot, including obtaining obstacle information relating to the arm of the robot by at least one sensor, obtaining current posture information of the arm of the robot by a least one detector and obtaining an expected posture information of an end-portion of the arm of the robot, determining an expected trajectory of the end-portion of the arm of the robot, determining an expected speed of the end-portion of the arm of the robot in accordance with the expected trajectory of the end-portion, determining a virtual speed of a target point on the arm of the robot, and configuring a target join speed corresponding to a joint of the arm of the robot. Such that the redundant arm of the robot may be configured to prevent from contacting the obstacles in the complex environment while performing corresponding tasks.
-
公开(公告)号:US11691284B2
公开(公告)日:2023-07-04
申请号:US17120225
申请日:2020-12-13
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Chunyu Chen , Yizhang Liu , Ligang Ge , Zheng Xie , Hongge Wang , Youjun Xiong , Jianxin Pang
IPC: B25J9/16 , B25J13/08 , B62D57/032
CPC classification number: B25J9/1664 , B25J9/1651 , B25J9/1694 , B25J13/085 , B25J13/088 , B62D57/032
Abstract: A robot control method includes: obtaining force information associated with a left foot and a right foot of the robot; calculating a zero moment point of a COM of a body of the robot based on the force information; updating a motion trajectory of the robot according to the zero moment point of the COM of the body to obtain an updated position of the COM of the body; performing inverse kinematics analysis on the updated position of the COM of the body to obtain joint angles of a left leg and a right leg of the robot; and controlling the robot to move according to the joint angles.
-
公开(公告)号:USD985643S1
公开(公告)日:2023-05-09
申请号:US29776824
申请日:2021-04-01
Applicant: UBTECH ROBOTICS CORP LTD
Designer: Yiping Li , Mingming Ji , Weizhi Shi , Xinshui Huang , Zheng Xie , Xue Yang , Qiuhong Shi , Meichun Liu , Weining Zhang , Qidong Xu , Youpeng Li , Jian Li
Abstract: FIG. 1 is a first perspective view of a robot showing the claimed design in accordance with the present disclosure;
FIG. 2 is a second perspective view thereof;
FIG. 3 is a front elevational view thereof;
FIG. 4 is a rear elevational view thereof;
FIG. 5 is a left side elevational view thereof;
FIG. 6 is a right side elevational view thereof;
FIG. 7 is a top plan view thereof; and,
FIG. 8 is a bottom plan view thereof.
The broken lines in the Figures are for the purpose of illustrating portions of the article that form no part of the claimed design.-
公开(公告)号:US11639005B2
公开(公告)日:2023-05-02
申请号:US17326259
申请日:2021-05-20
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Kunlei Zhao , Zheng Xie , Weizhi Shi , Minghua Chen , Zhaohui An , Youjun Xiong
Abstract: A robotic finger structure includes a proximal phalanx; a middle phalanx rotatably connected to one end of the proximal phalanx; a distal phalanx rotatably connected to one end of the middle phalanx and defining a distal phalanx opening in a front side thereof and at one end adjacent to the middle phalanx; a connecting rod having opposite ends that are rotatably connected to the proximal phalanx and the distal phalanx, and an actuating assembly to drive the middle phalanx to rotate with respect to the proximal phalanx. The connecting rod includes a first angled segment having a first recess facing a back side of the middle phalanx. When the distal phalanx is flush with the middle phalanx, the first angled segment passes through the distal phalanx opening, and a first end of the distal phalanx opening extends into the first recess.
-
公开(公告)号:US20220203534A1
公开(公告)日:2022-06-30
申请号:US17516729
申请日:2021-11-02
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyn Chen , Ligang Ge , Yizhang Liu , Hongge Wang , Jie Bai , Zheng Xie , Jiangchen Zhou , Meihui Zhang , Shuo Zhang , Youjun Xiong
IPC: B25J9/16 , B62D57/032 , G05D1/02
Abstract: A path planning method and a biped robot using the same are provided. The method includes: generating a candidate node set for a next foot placement based on a biped robot's own parameters and joint information of a current node, adding valid candidate nodes in the candidate node set to a priority queue so as to select optimal nodes for realizing next node expansion. These optimal nodes are output to generate a foot placement sequence from an initial node to a target node, which can greatly reduce the search amount for path nodes when the robot's legs intersect and touch the ground, thereby improving the efficiency of path planning.
-
40.
公开(公告)号:US20220152827A1
公开(公告)日:2022-05-19
申请号:US17314039
申请日:2021-05-06
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Hongge Wang , Mingqiang Huang , Jiangchen Zhou , Yizhang Liu , Zheng Xie , Youjun Xiong
IPC: B25J9/16
Abstract: A biped robot gait control method as well as a robot and a computer readable storage medium are provided. During the movement, the system obtains a current supporting pose of a current supporting leg of the biped robot, and calculates a relative pose between the supporting legs based on the current supporting pose and a preset ideal supporting pose of a next step. The system further calculates modified gait parameters of the next step based on the relative pose between the two supporting legs and a joint distance between left and right ankle joints in an initial state of the biped robot when standing. Finally, the system controls the next supporting leg to move according to the modified gait parameters.
-
-
-
-
-
-
-
-
-