Abstract:
A turbine airfoil segment includes inner and outer platforms that are joined by at least one airfoil. The airfoil includes leading and trailing edges that are joined by spaced apart first and second sides to provide an exterior airfoil surface. At least one of the inner and outer platforms includes film cooling holes that have external breakout points that are located in substantial conformance with the Cartesian coordinates set forth in Table 1 for the inner platform or Table 2 for the outer platform. The Cartesian coordinates are provided by an axial coordinate, a circumferential coordinate, and a radial coordinate, relative to a zero-coordinate. The film cooling holes have a diametrical surface tolerance relative to the specified coordinates of 0.20 inches (5.0 mm).
Abstract:
A sealing system for a turbomachine includes an annular seal defining a centerline axis and an inner diameter sealing surface. The sealing system also includes a turbomachine component radially inboard of the annular seal having a surface defined on an outer diameter surface. The sealing surface of the turbomachine component has a radius of curvature configured to be non-concentric with respect to the inner diameter surface of the annular seal in a cold state. The radius of curvature of the surface is configured to be substantially concentric with respect to the inner diameter surface of the annular seal in a hot state.
Abstract:
A turbine vane for a gas turbine engine has an inner platform, an outer platform, at least one airfoil extending between the inner and outer platforms, and a tab radially extending inward from a front side of the inner platform. The tab contains a mounting aperture and an identification aperture that identifies an engine in which the turbine vane may be installed.
Abstract:
A vane for a gas turbine engine includes a radially inner platform and a radially outer platform. At least two airfoils extend between the radially inner platform and the radially outer platform. At least two anti-rotation tabs extend axially from the radially outer platform.
Abstract:
A turbine airfoil segment includes inner and outer platforms that are joined by at least one airfoil. The airfoil includes leading and trailing edges that are joined by spaced apart first and second sides to provide an exterior airfoil surface. At least one of the inner and outer platforms includes film cooling holes that have external breakout points that are located in substantial conformance with the Cartesian coordinates set forth in Table 1 for the inner platform or Table 2 for the outer platform. The Cartesian coordinates are provided by an axial coordinate, a circumferential coordinate, and a radial coordinate, relative to a zero-coordinate. The film cooling holes have a diametrical surface tolerance relative to the specified coordinates of 0.20 inches (5.0 mm).
Abstract:
An airfoil stage of a turbine engine includes an upstream airfoil assembly, a downstream airfoil assembly in rotational relationship to the upstream airfoil assembly and a rim seal assembly integrated therebetween. The rim seal assembly may include a sloped downstream portion of a platform of the upstream airfoil assembly, an upstream segment of a platform of the downstream airfoil assembly and a nub that projects radially outward from the upstream segment. The downstream portion and the upstream segment are spaced from one-another defining a cooling cavity therebetween for the flow of cooling air. The portion and segment overlap axially such that the nub is axially aligned to the downstream portion for improved cooling effectiveness and a reduction of core airflow into the cooling cavity.
Abstract:
A turbine vane for a gas turbine engine has an inner platform, an outer platform, at least one airfoil extending between the inner and outer platforms, and a tab radially extending inward from a front side of the inner platform. The tab contains a mounting aperture and an identification aperture that identifies an engine in which the turbine vane may be installed.
Abstract:
A component for a gas turbine engine includes, among other things, an airfoil that extends between a leading edge and a trailing edge and a cooling circuit disposed inside of the airfoil. The cooling circuit includes at least one core cavity that extends inside of the airfoil, a baffle received within the at least one core cavity, a plurality of pedestals positioned adjacent to the at least one core cavity and a first plurality of axial ribs positioned between the plurality of pedestals and the trailing edge of the airfoil.
Abstract:
A blade for a gas turbine engine includes an airfoil that includes an internal passage. A shroud is arranged at an end of the airfoil and has a shroud perimeter. Axially spaced knife edges extend radially from the shroud. An area is provided between the knife edges. A pocket is recessed into the area and is circumscribed by a perimeter edge that is arranged interiorly of the shroud perimeter. An outlet fluidly connects the internal passage to the pocket.
Abstract:
A stator for a gas turbine engine includes a stator vane, a first cooling passage located at the stator to provide a cooling fluid flow to a first portion of the stator, and a second cooling passage located at the stator to provide a cooling fluid flow to a second portion of the stator. A connection passage extends at least partially through the stator to connect a first cooling passage inlet of the first cooling passage to a second cooling passage inlet of the second cooling passage. The cooling fluid flow is directed from a common cooling flow source into the first cooling passage and the second cooling passage via the first cooling passage inlet.