Abstract:
Provided is an apparatus and method for simultaneous optical wavelength conversion and optical clock signal extraction using semiconductor optical amplifiers (SOAs). The apparatus includes: a wavelength converter receiving a pump beam having input information and a probe beam having a different wavelength from the pump beam, and outputting the pump beam with an overshoot shifted to a red wavelength and an undershoot shifted to a blue wavelength due to non-linear characteristics and self-phase modulation of semiconductor optical amplifiers (SOAs) and the probe beam delivered the input information from the pump beam; an optical divider dividing output paths of the probe beam to which the input information has been delivered and the pump beam having the overshoot and the undershoot; a converted-wavelength extractor filtering the probe beam received from the optical divider; and a clock data regenerator obtaining a pseudo return-to-zero (PRZ) signal from the pump beam received from the optical divider and extracting a clock signal from the PRZ signal.The apparatus and method can simultaneously perform wavelength conversion and optical clock signal extraction on an NRZ signal using an optical method, without converting the NRZ signal into an electrical signal.
Abstract:
Provided are an apparatus for and a method of generating millimeter waves, in which millimeter-wave generation and frequency up-conversion can be achieved at the same time using a single device. The apparatus includes a mode-locking laser diode (LD) which has a distributed feedback (DFB) sector and a gain sector and generates high-frequency optical pulses through a passive mode locking process, a modulator which modulates an external optical signal using an electric signal and injects the modulated optical signal to the mode-locking LD to lock the optical pulses, and a radio frequency (RF) locking signaling unit which injects the electric signal to the modulator.
Abstract:
Provided is a signal processor for converting a signal that converts a return to zero (RZ) signal into a non-return to zero (NRZ) signal, in which two 2R (re-amplifying, re-shaping) regenerators are connected in parallel between an input waveguide and an output waveguide with different lengths from each other. The 2R regenerator includes: two semiconductor optical amplifiers having different lengths from each other; and phase control means connected to a short semiconductor optical amplifier. The RZ signal input by a length difference of the waveguide is delayed by a time difference of a half of one bit so that the 2R regenerated NRZ signal can be obtained.