Abstract:
A method and device for detecting control signaling and a method and device for implementing control signaling detection are provided, wherein blind detection times or the amount of enhanced Physical Downlink Control Channels (ePDCCH) allocated by each ePDCCH resource set is determined, so that the ePDCCH needed to be detected in each ePDCCH resource set can be determined.
Abstract:
Disclosed are a method and a device for detecting control signalling and implementing control signalling detection. In a subframe S, a terminal detects the control signalling in K ePDCCH resource sets; the terminal detects set X(i) of aggregation level of the resource in Set i of the K ePDCCH resource sets, wherein i is an integer, 0
Abstract:
A method for transmitting primary synchronization signals and secondary synchronization signals in new carriers is provided, which includes: with respect to a time domain, a base station side sending Primary Synchronization Signals (PSS) and Secondary Synchronization Signals (SSS) in Orthogonal Frequency Division Multiplexing (OFDM) symbols except OFDM symbols occupied by reference signals in subframes #1 and #6, or subframes #0 and #5, or subframes #1, #6, #0 and #5; and with respect to a frequency domain, the base station side sending the PSS or SSS in resources of intermediate 6 Physical Resource Block (PRB) pairs of system bandwidth; the reference signals include Demodulation Reference Signals (DMRS).
Abstract:
The disclosure provides an information transmission method and apparatus. The method includes: carrying a first parameter in physical layer signaling corresponding to a Physical Downlink Shared Channel (PDSCH); and transmitting, according to an indication of the first parameter, a Hybrid Automatic Repeat Request Acknowledgment (HARQ-ACK) corresponding to the PDSCH, which may be specifically identifying an indication meaning of the current first parameter on a predetermined basis and selecting which positions are used to transmit the HARQ-ACK. By adopting the above solution, a first communication node itself sets a position at which an HARQ-ACK is transmitted, and a second communication node feeds back, according to an indication, the HARQ-ACK corresponding to a PDSCH in time, thereby solving the problem of greater delay for HARQ-ACK feedback in the related art, and ensuring the low delay processing of a service.
Abstract:
Provided are a transmission method, apparatus and system. The transmission method includes: in response to UCI being configured to be transmitted in a PUSCH, and the PUSCH does not have a UL-SCH, determining to transmit the UCI according to an actual code rate of the UCI and a preset threshold. The preset threshold is determined according to a predetermined code rate and a predetermined value β. In the embodiment of the present disclosure, when the UCI is transmitted based on a given modulation mode, the UCI is determined to be transmitted according to the actual code rate of the UCI and the preset threshold.
Abstract:
New sequences have been proposed and/or adopted for short Physical Uplink Control Channel communications between base stations and UEs. In an exemplary embodiment, a UE communicates with a base station based on sequence groups that include the new sequences, where the new sequences are allocated to different sequence groups based, at least in part, on correlations with other existing sequences included in individual sequence groups.
Abstract:
Methods, systems, and devices are disclosed for digital wireless communication, and more specifically, for initializing and using demodulation reference signals. In one exemplary aspect, a method of wireless communication performed by a communication node includes generating a first portion of an initial value of a demodulation reference signal (DMRS) based, at least in part, on combining a time index and at least a portion of an ID index. The method also includes generating a second portion of the initial value of the DMRS based, at least in part, on the ID index, and generating the initial value of the DMRS by combining at least the first and second portions. The method further includes transmitting or receiving the DMRS.
Abstract:
A system and method for allocating network resources are disclosed herein. In one embodiment, the system and method are configured to perform: determining a resource indication value based on at least a first parameter and a second parameter, the resource indication value indicative of a number of resource blocks to be allocated to a communication node, wherein a number of possible different values of the resource indication value is limited by a predefined relationship between the first parameter and the second parameter; and transmitting the resource indication value to the communication node.
Abstract:
Provided are a method and device for transmitting control information, and a computer storage medium. The method includes: configuring the control information; and sending the control information, where the control information includes at least one of: configuration information of a PUCCH resource for CQI feedback, resource allocation information for indicating time domain resource allocation, or indication information for indicating whether to send in a data region DCI related to the CQI feedback.
Abstract:
One or more devices, systems, and/or methods for utilizing a control resource set comprising a physical downlink control channel and a plurality of resource element group bundles containing different quantities of resource element groups. An example method for wireless communication comprises forming a first resource region comprising at least a first type of REG bundle and a second type of REG bundle, and performing a control channel transmission using the first resource region. The first type and the second type of REG bundles may comprise different quantities of resource element groups, and the first type and the second type of REG bundles may correspond to candidates of different aggregation levels.