Abstract:
A speech compression/decompression system and method which do not require special hardware are described. The compression unit represents an input audio signal as a collection of parameters, wherein the parameters are a remnant excitation pulse sequence, a set of spectral coefficients and a set of pitch parameters. The decompression unit utilizes the pitch parameters and remnant excitation pulse sequence to produce a reconstructed excitation signal. The decompression unit also utilizes the spectral coefficients to filter the reconstructed excitation signal into a speech waveform. The compression unit includes a short-term predictor, a two-step long-term predictor and a multi-pulse analyzer.
Abstract:
A TX/RX RF switch that may include a reception path; and a transmission path that has an antenna port, a transmission input port, and transmission transistors. The transmission transistors have source-bulk connections. The reception path has an antenna port, a reception output port, and reception transistors. The reception path includes a first reception transistor that is closest to the antenna port, out of the reception transistors, and has a source-bulk connection, and at least one other reception transistor that has a bulk-to-ground connection. The reception transistors and the transmission transistors are CMOS transistors.
Abstract:
A method for distributed neural network processing, the method may include detecting, by a local neural network that belongs to a local device, and based on sensed information, an occurrence of a triggering event for executing or completing a classification or detection process; sending to a remote device, a request for executing or completing the classification or detection process by a remote device that comprises a remote neural network; wherein the remote neural network has more computational resources than the local neural network; determining by the remote device whether to accept the request; and executing or completing, by the remote device, the classification or detection process when determining to accept the request; wherein the executing or completing involves utilizing the remote neural network.
Abstract:
A first mobile communication device that includes a first microphone, a first speaker, and a first delay unit. The first microphone is configured to (i) receive, during a conference call, a first user first microphone signal from a first user, and (ii) output a first microphone digital signal to the first delay unit. The first user first microphone signal represents audio content outputted by the first user. The first delay unit is configured to delay, by a delay period, the first microphone digital signal to provide a delayed first user first device digital signal. The first mobile communication device is configured to output, to a mixer, the delayed first user first device digital signal. The delay period is determined based on measurements executed by at least one mobile communication device out of the first mobile communication device, a second mobile communication device and a third mobile communication device.
Abstract:
A mobile communication device that comprises a microphone, a speaker, an input output port and one or more modules; wherein the microphone is configured to receive, during a conference call, (a) an acoustic signal from a first person, and (b) a cross echo from a speaker of another mobile communication device that participates in the conference call, the cross echo is generated as a result of the acoustic signal from the first person; and wherein the one or more modules are configured to cancel the cross echo based, at least in part, of the acoustic signal of the first person.
Abstract:
A low noise amplifier that includes a first cascode, a second cascode, an input circuit, an output node, a first switch, and a second switch. A source of a first common gate transistor and a drain of a first common source transistor of the first cascode are coupled to a first node of the low noise amplifier. The output node is coupled to a drain of the first common gate transistor, and to a drain of a second common gate transistor of the second cascode, thereby coupling the first cascode and the second cascode to a power supply via a load. The first switch is coupled between a gate of the first common gate transistor and the power supply. The second switch is coupled between the first node and the power supply. The first switch is configured to be open and the second switch is configured to be closed when the low noise amplifier operates at a first operational node. The first switch is configured to be closed and the second switch is configured to be open when the low noise amplifier operates at a second operational node that differs from the first operational mode by at least a gain of the low noise amplifier.
Abstract:
There is provided a RF-DAC that may include (i) a first PAM that includes a first group of first power amplifiers of different amplifications, (ii) a second PAM that includes a second group of second power amplifiers of different amplifications; (iii) a load that includes an output port and a transformer; (iv) power amplifiers control units, and a transformer control unit. During a cycle of operation (i) each one of the first and second PAMs is configured to receive one or more power amplifiers digital control signals and activate a single power amplifier per each of the first and second PAMS, (ii) the transformer control unit is configured to receive a transformer digital control signal and control a transformer parameter of the transformer, and (iii) the transformer is configured to receive a first PAM output signal and a second PAM output signal, and output a transformer output signal that reflects digital information represented by the one or more power amplifiers digital control signals and the transformer digital control signal.
Abstract:
A method for in-ear detection, the method may include transmitting test signals, by a speaker of an earbud, during a test period, and while the earbud is operating at a first operational mode, wherein the test signals comprise at least one first test signal within a first frequency range, at least one second test signal within a second frequency range, and at one third test signal within a third frequency range; wherein the first frequency range, the second frequency range and the third frequency range differ from each other and are within a human auditory range; generating, by a feedback microphone of the earbud, sensed information that is indicative of audio signals sensed by the feedback microphone as a result of the transmitting of the test signals; and determining whether the earbud is located within an ear of a person, wherein the determining is based on the sensed information and a reference out of ear spectrum.
Abstract:
A coin cell powered device that includes a unit and one or more interfaces that are configured to interface between the unit, the cell coin and an external capacitor. The unit may include a regulator, a transmitter and a charge pump. The transmitter is configured to transmit signals during a transmission period while receiving power from the regulator, the power originated from the external capacitor. The charge pump is configured to perform, during a charging period, a charging process for charging the external capacitor to a charged voltage that exceeds a voltage of the cell coin, wherein the charging process may include iterations of (a) charging a charge pump capacitor by the coin cell, and (b) discharging the charge pump capacitor thereby charging the external capacitor. The capacitance of the charge pump capacitor is a fraction of a capacitance of the external capacitor. The duration of the charging period exceeds a duration of the transmission period.
Abstract:
A method for voice detection, the method may include (a) generating an in-ear signal that represents a signal sensed by an in-ear microphone and fed to a feedback active noise cancellation (ANC) circuit; (b) generating at least one additional signal, based on at least one out of a playback signal and a pickup signal sensed by a voice pickup microphone; and (c) generating a voice indicator based on the in-ear signal and the at least one additional signal.