Abstract:
In a storage system architecture having two storage virtualization controllers (SVCs) that operate in an active-active mode, the corresponding relationships between storage addresses in the two buffers of the two SVCs are pre-determined. When a non-owner SVC that does not have an ownership over a logical disk (LD), receives an I/O request from a host, the non-owner SVC will inquire of the other SVC having the ownership, about associated address information, and then the non-owner SVC that does not have the ownership over the LD will perform, according to the associated address information, the I/O request from the host. Therefore, data synchronization operation for mutually backing up data between the two SVCs can be fast achieved. Also, it allows the host to issue a data access request to any one of the SVCs, thus improving performance of the storage system.
Abstract:
A method for remote asynchronous volume replication and apparatus therefor. Asynchronous replication is applied to handle data changes on the source volume on the local site incurred by Host IO requests. In coordination with the “point-in-time differential backup” technology, the original data in the block to be written by a host IO request will be backuped to Source BAS on the local site (backup-on-write operation) only when the original data being written into the block of the source volume is different from the data of the corresponding block of the destination volume on the remote site. As a result, once a new data is written into the source volume completely, the host will be responded that its Host IO request is completed. Therefore, the data necessarily transmitted to the destination volume can be minimized, and the problem of remote data transmission limited by network bandwidth can be prevented effectively.
Abstract:
A method for generating a virtual volume (VV) in a storage system architecture. The architecture comprises a host and one or more disk array subsystems. Each subsystem comprises a storage controller. One or more of the subsystems comprises a physical storage device (PSD) array. The method comprises the following steps: mapping the PSD array into a plurality of media extents (MEs), each of the MEs comprises a plurality of sections; providing a virtual pool (VP) to implement a section cross-referencing function, wherein a section index (SI) of each of the sections contained in the VP is defined by the VP to cross-reference VP sections to physical ME locations; providing a conversion method or procedure or function for mapping VP capacity into to a VV; and presenting the VV to the host. A storage subsystem and a storage system architecture performing the method are also provided.
Abstract:
A method and apparatus for performing volume replication using a unified architecture are provided. Each volume has an exclusive volume log table (VLT) and an exclusive volume block update table (VBUT). The VLT is mainly used for recording the relationship between two volumes of a mirroring pair, and the VBUT is used for tracking the state of each data block of the volume itself. By means of the cross operations between the VLT and the VBUT, various volume replication processes such as volume copying and volume mirroring can be enabled under a unified architecture. Specifically, for each volume, different replication relationships with other volumes can be handled merely by administering its two exclusive tables. Hence, the method and apparatus provided by the present invention can advantageously simplify the architecture for synchronization replication and reduce the burdens of administrating tables, thereby making the operation of a storage system more efficient.
Abstract:
Method for accessing data in a storage system architecture, the architecture comprises at least one disk array subsystem, comprising the following steps. Provide a SAS for managing a first and a second media extent (ME) the at least one subsystem. Obtain a location index corresponding to a host LBA via a BAT. Obtain a location information of a physical section located in the first ME corresponding to the location index via a physical section to virtual section cross-referencing functionality. Update the cross-reference in the cross-referencing functionality so that the location information obtained from the cross-referencing functionality corresponding to the location index is the location information of the second physical section. A host IO request addressing the host LBA accesses data in the second physical section utilizing the location information of the second physical section.
Abstract:
Disclosed is a storage virtualization subsystem (SVS) architecture comprising a plurality of SVSs, each SVS comprising at least one storage virtualization controller (SVC), and, in some cases, a physical storage disk (PSD) array attached to the SVC. A first and a second data access path is configured passing through the SVSs to form the SVS architecture such that when one path is failed, the other can be taken as a substitution. The SVSs in the first path are connected in a first sequence and the SVSs in the second path are connected in a second sequence different from the first one. In another embodiment, each SVS comprises a plurality of redundantly-configured SVCs rather than one SVC. The first path is formed passing through a first set of SVCs and the second path is formed passing through a different second set of SVCs.
Abstract:
A storage virtualization computer system. The storage virtualization computer system comprises a host entity for issuing an IO request, a SAS storage virtualization controller coupled to the host entity for executing IO operations in response to the IO request, and at least one physical storage device, each coupled to the storage virtualization controller through a SAS interconnect, for providing data storage space to the storage virtualization computer system through the SAS storage virtualization controller.
Abstract:
A storage virtualization computer system. The storage virtualization computer system comprises a host entity for issuing an IO request, a storage virtualization controller coupled to the host entity for executing IO operations in response to the IO request, and a at least one physical storage device, each coupled to the storage virtualization controller through a point-to-point serial-signal interconnect, for providing storage to the storage virtualization computer system through the storage virtualization controller. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.
Abstract:
A display device for indicating connection statuses of a communication channel between two systems is disclosed, the communication channel having a plurality of communication links. The display device comprises a detecting circuit coupled to the communication channel for detecting a plurality of link statuses of the communication links; an indicator controller coupled to the detecting circuit for determining the connection statuses of the communication channel according to the link statuses; and an LED indicator coupled to the indicator controller for displaying in a plurality of statuses according to the connection statuses from the indicator controller; wherein the connection statuses comprise a first connection status indicating that all the link statuses are “ON”, a second connection status indicating that all the link statuses are “OFF”, and a third connection status indicating that at least one of the link statuses is “ON” and at least one of the link statuses is “OFF”.
Abstract:
A redundant controller storage virtualization subsystem performing host-side IO rerouting and dynamic logical media unit reassignment. In one embodiment, the assignment of logical media unit owner can be dynamically reassigned to the receiving storage virtualization controller which was originally not the logical media unit owner such that the receiving storage virtualization controller becomes new logical media unit owner to execute the IO request. In another embodiment, the dynamic logical media unit reassignment can be performed according to the operating condition(s) of the storage virtualization system so as to improve the performance of the storage virtualization system. In a further embodiment, the controller storage virtualization subsystem can perform host-side IO rerouting when the timing for performing dynamic logical media unit reassignment is not reached.