Abstract:
A storage virtualization computer system. The storage virtualization computer system comprises a host entity for issuing an IO request, a storage virtualization controller coupled to the host entity for executing IO operations in response to the IO request, and a at least one physical storage device, each coupled to the storage virtualization controller through a point-to-point serial-signal interconnect, for providing storage to the storage virtualization computer system through the storage virtualization controller. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.
Abstract:
A JBOD subsystem for providing storage to a host entity. The JBOD subsystem contains at least one external JBOD emulation controller coupled to the host entity for emulating IO operations in response to the IO requests and a set of at least one physical storage device coupled to the JBOD emulation controller for providing storage to the host entity through the JBOD emulation controller. The JBOD emulation controller defines at least one logical media unit (LMU) consisting of sections of the set of physical storage device (PSD) and communicates with the PSD through a point-to-point serial-signal interconnect. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.
Abstract:
A redundant external storage virtualization computer system. The redundant storage virtualization computer system includes a host entity for issuing an IO request, a redundant external storage virtualization controller pair coupled to the host entity for performing an IO operation in response to the IO request issued by the host entity, and a plurality of physical storage devices for providing storage to the computer system. Each of the physical storage devices is coupled to the redundant storage virtualization controller pair through a point-to-point serial signal interconnect. The redundant storage virtualization controller pair includes a first and a second storage virtualization controller both coupled to the host entity. In the redundant storage virtualization controller pair, when the second storage virtualization controller is not on line, the first storage virtualization controller will take over the functionality originally performed by the second storage virtualization controller.
Abstract:
A redundant external storage virtualization computer system. The redundant storage virtualization computer system includes a host entity for issuing an IO request, a redundant external storage virtualization controller pair coupled to the host entity for performing an IO operation in response to the IO request issued by the host entity, and a plurality of physical storage devices for providing storage to the computer system. Each of the physical storage devices is coupled to the redundant storage virtualization controller pair through a point-to-point serial signal interconnect. The redundant storage virtualization controller pair includes a first and a second storage virtualization controller both coupled to the host entity. In the redundant storage virtualization controller pair, when the second storage virtualization controller is not on line, the first storage virtualization controller will take over the functionality originally performed by the second storage virtualization controller.
Abstract:
A redundant external storage virtualization computer system. The redundant storage virtualization computer system includes a host entity for issuing an IO request, a redundant external storage virtualization controller pair coupled to the host entity for performing an IO operation in response to the IO request issued by the host entity, and a plurality of physical storage devices for providing storage to the computer system. Each of the physical storage devices is coupled to the redundant storage virtualization controller pair through a point-to-point serial signal interconnect. The redundant storage virtualization controller pair includes a first and a second storage virtualization controller both coupled to the host entity. In the redundant storage virtualization controller pair, when the second storage virtualization controller is not on line, the first storage virtualization controller will take over the functionality originally performed by the second storage virtualization controller
Abstract:
The present invention provides an improved retaining tool of heat radiator comprising a heat radiator and two retaining tools. Slide grooves are disposed at two opposite sides of the heat radiator. The slide grooves can join the two integrally formed retaining tools. A first hook board, a long board body, and a second hook board are formed on each of the two retaining tools. The first hook boards and the second hook boards can be hooked and joined at the bottom of a heat-emitting element (e.g., a chip or a CPU) of a motherboard. Each of the long board bodies has two protuberances and two resilient sheets to effectively prevent the retaining tools from detaching when being joined in the slide grooves at the two sides of the heat radiator.
Abstract:
A JBOD subsystem for providing storage to a host entity. The JBOD subsystem contains at least one external JBOD emulation controller coupled to the host entity for emulating IO operations in response to the IO requests and a set of at least one physical storage device coupled to the JBOD emulation controller for providing storage to the host entity through the JBOD emulation controller. The JBOD emulation controller defines at least one logical media unit (LMU) consisting of sections of the set of physical storage device (PSD) and communicates with the PSD through a point-to-point serial-signal interconnect. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.
Abstract:
An SAS RAID head is provided to connect between at least one initiator and at least one storage device. It is a connection head possessed of the RAID function. The SAS RAID head comprises at least one SVC (or a SVC pair), a cooling module, a power supply, and/or an enclosure for accommodating and fixing the above-mentioned components. Wherein, the device-side I/O device interconnect of the SVC (or SVC pair) is the SAS interface. The invention has the flexibility to vary the numbers of initiators and storage devices connected thereto in order to satisfy the topological structures of various systems.
Abstract translation:提供SAS RAID头以在至少一个启动器和至少一个存储设备之间连接。 它是具有RAID功能的连接头。 SAS RAID头包括至少一个SVC(或SVC对),冷却模块,电源和/或用于容纳和固定上述组件的外壳。 其中,SVC(或SVC对)的设备端I / O设备互连是SAS接口。 为了满足各种系统的拓扑结构,本发明具有改变与其连接的启动器和存储装置的数量的灵活性。
Abstract:
A storage virtualization computer system. The storage virtualization computer system comprises a host entity for issuing an IO request, a storage virtualization controller coupled to the host entity for executing IO operations in response to the IO request, and a at least one physical storage device, each coupled to the storage virtualization controller through a point-to-point serial-signal interconnect, for providing storage to the storage virtualization computer system through the storage virtualization controller. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.
Abstract:
A storage virtualization computer system. The storage virtualization computer system comprises a host entity for issuing an IO request, a storage virtualization controller coupled to the host entity for executing IO operations in response to the IO request, and a at least one physical storage device, each coupled to the storage virtualization controller through a point-to-point serial-signal interconnect, for providing storage to the storage virtualization computer system through the storage virtualization controller. As an example, the point-to-point serial-signal interconnect can be a Serial ATA IO device interconnect.