Abstract:
Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal. Modulating the phase difference between the interrogation signal and the leakage light suppresses the interference between the leakage light and the interrogation signal.
Abstract:
A method and apparatus that uses specific source modulation and detectors to detect a response that carries information about a system response matrix associated with each sensor in a interferometric sensor array and extracting a sensor response in a manner that eliminates polarization-induced signal fading and that is insensitive to lead fiber birefringence fluctuations.
Abstract:
A method and apparatus that uses specific source modulation and detectors to detect a response that carries information about a system response matrix associated with each sensor in a interferometric sensor array and extracting a sensor response in a manner that eliminates polarization-induced signal fading and that is insensitive to lead fiber birefringence fluctuations.
Abstract:
A fiber optic sensor system comprises at least one measuring sensor 1 providing an optical output dependent upon one or more parameters to be measured, e.g. temperature, and at least one reference sensor 2 providing a reference output for comparison with the measuring sensor output. The reference sensor is provided in a birefringent fiber.The system includes a detecting means 13,14 whereby a reference beat signal f2 is derived by measuring the optical frequency splitting between frequency components in different polarization planes of the reference sensor output. A further beat signal f3 is generated between the measuring and reference sensor outputs, such beat signals being used to derive a measurement of one or more parameters.
Abstract:
Method and assembly for sustained elimination or reduction of polarization induced signal fading in optical interferometer networks comprising at least two optical paths from an input port to an output port, the transmission delays of the paths differing by τ, an interrogation arrangement interrogating the optical phase differences between the paths, containing at least one optical source launching optical power into a port, a detector arrangement converting the optical power from an output port into electrical detector signals, and a control and signal processing unit capable of processing detector signals to determine the phase difference. The method comprising the steps of: altering the input polarization state produced by the source with a modulation frequency that is comparable to or higher than 1/(4τ) receiving the optical signals at the detector arrangement providing a detector signal; processing the detector signal determining the phase difference between the optical signals.
Abstract:
The invention relates to a method of interrogating an interferometric optical fiber sensor system including a laser source configured to generate interrogation light and a sensor array with at least a first reflector and a second reflector. The method includes continuously and repeatedly frequency sweeping the interrogation light from the laser source within a sweep bandwidth (SWB) over a sweep duration (tsw) with a substantially constant sweep rate r=SBW/tsw to produce a swept interrogation light signal, launching the swept interrogation light signal into the sensor array, detecting reflected signals being returned from the sensor array by each of the reflectors, respectively, wherein detection includes mixing a return light signal from the sensor array with a local oscillator signal onto an optical receiver to produce an electrical radio frequency signal, demultiplexing the electrical radio frequency signal into a first signal channel and a second signal channel, corresponding to the first and second reflector, respectively, demodulating each of the first and second signal channel into a first phase response from the first reflector and a second phase response from the second reflector, and subtracting the first phase response from the second phase response to obtain a sensor phase signal.
Abstract:
There is provided a solid seismic streamer cable for use in seismic surveying in marine environments. The streamer is characterized by a buffer layer 2 which is provided with a cut-out 50 and a sensor element arranged in the cut-out 50. There is also provided an associated hydrophone for integration into the seismic streamer cable. The hydrophone is characteristic in a split-element sensor base 10, 11 being suited for efficient mounting into the cut-outs 50 of the seismic cable. There is also provided an associated accelerometer for integration into the seismic streamer cable. The accelerometer is characteristic by a split-element sensor base 30, 35 for being efficiently arranged into the cut-outs 50 of the seismic cable. A method of producing a seismic streamer cable according to the invention incorporating a hydrophone or accelerometer according to the invention is also provided.
Abstract:
Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
Abstract:
A tri-axis accelerometer for use in seismic surveying is provided. The accelerometer comprises at least three fiber optic accelerometer elements which have respective fiber sensor coils, and which are characteristic in that the fiber sensor coils are coiled about a common coiling axis and at least one of the accelerometer elements is a slant angle accelerometer element. A corresponding method of manufacturing a tri-axis fiber optic accelerometer is also disclosed. A fiber optic tri-axis accelerometer for sensing acceleration in three directions is also provided, which comprises a first, a second, and a third sensor base, each base including a first, a second, and a third fixed element, respectively, and a first, a second, and a third movable element, respectively, each pair of fixed and movable elements carrying a fiber sensing coil. The fiber sensing coils are all coiled around a common coiling axis and at least one of the movable elements is designed and mounted so as to be movable in a direction that is slanted with respect to the common coiling axis.
Abstract:
Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.