Abstract:
The present invention relates to a stereo interactive method adapted for an interactive scene of a stereo display device and a stereo interactive operating stick. The method includes: obtaining motion trajectory information of the operating stick; calculating invasion degree information of an invasion that the operating stick applies to a virtual object displayed by the display device according to motion trajectory information and preset property information of the virtual object; calculating interaction feedback information according to motion trajectory information, invasion degree information and the preset property information; and controlling the operating stick and the virtual object to make responses matched with the preset property of the virtual object according to the interaction feedback information. The present further provides stereo interactive display device, operating stick and system. When using the operating stick to interact with the virtual object, real operation tactile can be experienced by the user of operation.
Abstract:
A multiple-viewer auto-stereoscopic display apparatus includes a display unit, an eye-tracking unit, a light transmission control unit, a light separation unit, and a synchronization control unit. The display unit is configured to display a view sequence of a plurality of view images of a 3D image in multiple viewing zones to one or more viewers. The light transmission control unit is configured to control light transmission to a particular viewing zone. The light separation unit is configured to separate the plurality of view images for the viewers to perceive 3D display. Further, the synchronization control unit is configured to synchronize refreshing of the display unit and the light transmission control unit, wherein a refreshing rate of the display unit equals to a refreshing rate of the light transmission control unit, and to dynamically adjust the view sequence based on the position information of the one or more viewers.
Abstract:
A method for 2D/3D switchable displaying includes: real-time detecting a 3D display area; when a change of the 3D display area is detected, calculating a gradient coefficient based on a number of frame of change and a rate of the change of the 3D display area; adjusting a 3D image area and a 3D grating area based on the calculated gradient coefficient; and performing a stereoscopic display by the adjusted 3D image area and the adjusted 3D grating area. When the 3D display area starts a change and ends the change, the 3D display area gradually is switched to be 2D display and switched to be 3D display respectively, so that a gradient visual effect is achieved, and the problems of viewing image jitter and 3D effect mistake caused by pixel arrangement and hardware control in the 3D display area being not synchronized can be avoided.
Abstract:
A 2D/3D display system is provided. The system includes a first substrate, a second substrate arranged facing the first substrate with a distance from the first substrate, a liquid crystal layer including liquid crystal molecules and configured to provide a display area, a first electrode section and a second electrode section arranged on a first side of the liquid crystal layer, a third electrode section arranged on a second side of the liquid crystal layer, and voltage output modules. The voltage output modules are configured to receive image display adjustment signals, where the image display adjustment signals includes at least one of 2D display area position information and 3D display area position information. The voltage output modules are also configured to provide one or more driving voltages for the first electrode section, the second electrode section and the third electrode section based on the received image display adjustment signals.
Abstract:
A parallax barrier device includes a first electrode, a second electrode, a liquid crystal layer, a polarizer, and a controller. The first electrode includes a plurality of first sub-electrodes, and the second electrode includes a plurality of second sub-electrodes arranged intersecting the plurality of first sub-electrodes. The liquid crystal layer is disposed between the first electrodes and the second electrode, and the liquid crystal layer forms respective display windows corresponding to regions formed by the intersections of the first sub-electrodes and the second sub-electrodes. The polarizer is disposed on the first electrode or the second electrode on a side away from the liquid crystal layer. Further, the controller is coupled to the first electrodes and the second electrode and configured to control voltages on the plurality of first sub-electrodes and the plurality of second sub-electrodes to form a parallax barrier.
Abstract:
The present disclosure provides a detecting device of a birefringent lens grating. The detecting device includes a projection pattern disposed adjacent to the birefringent lens grating; an illuminating light source for projecting light onto the projection pattern and the birefringent lens grating; an image capturing device for capturing the light out from the birefringent lens grating and obtaining a projection pattern image of the projection pattern; and a controller for comparing the projection pattern image with a reference to determine a refractive index matching degree of the birefringent lens grating. The present disclosure further provides a detecting method, a manufacture method and a manufacture device of the birefringent lens grating.
Abstract:
A method is provided for a 3D virtual training system. The 3D virtual training system includes a 3D display screen and an operating device, and the method includes initializing a virtual medical training session to be displayed on the 3D display screen, where 3D display contents include at least a 3D virtual image of a surgery site. The method also includes obtaining user interaction inputs via the operating device and the 3D display screen, and displaying on the 3D display screen a virtual surgery device and a virtual surgery operation on the surgery site by the virtual surgery device. Further, the method includes determining an operation consequence based on the user interaction inputs and the surgery site, rendering the operation consequence based on the surgery site and effects of the virtual surgery operation, and displaying 3D virtual images of the rendered operation consequence on the 3D display screen.
Abstract:
A three-dimensional (3D) display system is provided for displaying a 3D image. The 3D display system includes a display panel having pixels arranged at a pixel spatial period and a lens grating disposed together with the display panel. The lens grating further includes a plurality of lens units arranged at a first period and a plurality of non-lens units arranged at a second period. The second period is greater than one-third of the first period and less than two-thirds of the first period, and the plurality of lens units and the plurality of non-lens units are arranged such that the lens grating has a different spatial period from the pixel spatial period to reduce Moire fringe effect between the lens grating and the pixels of the display panel.
Abstract:
A 2D/3D switching system contains a 2D/3D switching device having a display area for selectively processing lights from 2D images and 3D images. The 2D/3D switching device includes a first substrate, a plurality of first electrodes formed on the first substrate, a second substrate, a plurality of second electrodes formed on the second substrate and arranged corresponding to the plurality of first electrodes and separated with a distance, and a liquid crystal layer placed between the first substrate and the second substrate to provide the display area. A driving unit is configured to provide driving voltages to the plurality of first electrodes and the plurality of second electrodes. The driving unit applies a plurality of voltages on the first electrodes and the second electrodes to enable the liquid crystal layer to operate in one of a full-screen 2D mode, a full-screen 3D mode, and a 2D/3D mode.
Abstract:
A method is provided for a three-dimensional (3D) display system. The method includes obtaining a plurality of original images of a plurality of viewpoints in a 3D image for display, and determining an actual size of a display window on a display device configured to display the 3D image. The method also includes adjusting an average parallax value between at least two of the plurality of original images based on the actual size of the display window. Further, the method includes creating a new 3D image with a desired average parallax based on the adjusted plurality of original images, and sending the new 3D image to the display device for display.