Abstract:
A multiple-viewer auto-stereoscopic display apparatus includes a display unit, an eye-tracking unit, a light transmission control unit, a light separation unit, and a synchronization control unit. The display unit is configured to display a view sequence of a plurality of view images of a 3D image in multiple viewing zones to one or more viewers. The light transmission control unit is configured to control light transmission to a particular viewing zone. The light separation unit is configured to separate the plurality of view images for the viewers to perceive 3D display. Further, the synchronization control unit is configured to synchronize refreshing of the display unit and the light transmission control unit, wherein a refreshing rate of the display unit equals to a refreshing rate of the light transmission control unit, and to dynamically adjust the view sequence based on the position information of the one or more viewers.
Abstract:
A method is provided for controlling stereoscopic display. The method includes a collection device obtaining a position variation between a space position of a viewer at the current time and a space position of the viewer at the previous time, wherein the position variation is an offset of parallel translation of the space position of the viewer relative to a display panel. The method also includes an adjusting device adjusting a stereoscopic display apparatus based on the space position of the viewer at the current time and the position variation.
Abstract:
A three-dimensional (3D) display apparatus is provided for displaying a 3D image. The 3D display apparatus includes a display panel and a grating device coupled to the display panel. The display panel includes a plurality of display pixels arranged in a two-dimensional array, and each pixel includes multiple sub-pixels. The grating device includes a plurality of grating elements based on liquid crystal to guide lights associated with the plurality of display pixels into predetermined viewing directions. Further, the grating device is one of a lenticular lens grating and a slit grating, and the plurality of grating elements are arranged in parallel. The plurality of grating elements cover the plurality of display pixels and are tilted at an inclination angle with respect to the display pixels, and each grating element comprises a plurality of electrodes arranged at the inclination angle. Further, a width of the electrodes is less than or equal to a width of a sub-pixel and a width between any two electrode is less than or equal to a sub-pixel.
Abstract:
A three-dimensional (3D) display system is provided. The 3D display system includes a backlight plate, a display panel, a light-splitting device, and a polarization state controller. The display panel is configured to display a two-dimensional (2D) image in a 2D mode or to display a 3D image in a 3D mode. The light-splitting device is configured to an arrangement module configured to pass the 2D image in the 2D mode, and to separate the 3D image into a left image and a right image. Further, the polarization state controller is disposed between the display panel and the light-splitting device and is configured to rotate a polarization direction of light emitted from the display panel in the 2D mode, and to keep the polarization direction of the light emitted from the display panel in the 3D mode.
Abstract:
A method is disclosed for a stereoscopic display system. The display system has a display panel containing an array of display units and a plurality of stereoscopic devices coupled to the display panel to affect three-dimensional (3D) display. The method includes receiving a 3D image to be displayed on the array of display units. The method also includes determining original display values for the display units and determining a coupling relationship between the display units and the stereoscopic devices. Further, the method includes determining a crosstalk condition based on the coupling relationship, and adjusting the original display values of display units based on the coupling relationship, the crosstalk condition, and the original display values of both the left display units and the right display units such that the crosstalk condition is cancelled. The method also includes displaying the 3D image using the adjusted display values of the display units.
Abstract:
A three-dimensional (3D) display system is provided for displaying a 3D image including a first view image and a second view image to a viewer. The 3D display system includes an arrangement module, a processing module, and a displaying module. The arrangement module is configured to alternatingly arrange display units of the first view image and display units of the second view image on a display panel. The processing module is configured to obtain an information difference of a display unit of the second view image from the display units of the first view image, and re-calculate a pixel value of the display unit of the second view image. The displaying module is configured to display to the viewer the display unit of the second view image with the re-calculated pixel value via a light separation device.
Abstract:
A method, apparatus and smart wearable device for fusing augmented reality and virtual reality are provided. The method for fusing augmented reality (AR) and virtual reality (VR), comprising acquiring real-world scene information collected by dual cameras mimicking human eyes in real time from an AR operation; based on virtual reality scene information from a VR operation and the acquired real-world scene information, generating a fused scene; and displaying the fused scene.
Abstract:
A parallax barrier device includes a first electrode, a second electrode, a liquid crystal layer, a polarizer, and a controller. The first electrode includes a plurality of first sub-electrodes, and the second electrode includes a plurality of second sub-electrodes arranged intersecting the plurality of first sub-electrodes. The liquid crystal layer is disposed between the first electrodes and the second electrode, and the liquid crystal layer forms respective display windows corresponding to regions formed by the intersections of the first sub-electrodes and the second sub-electrodes. The polarizer is disposed on the first electrode or the second electrode on a side away from the liquid crystal layer. Further, the controller is coupled to the first electrodes and the second electrode and configured to control voltages on the plurality of first sub-electrodes and the plurality of second sub-electrodes to form a parallax barrier.
Abstract:
A method is provided for a 3D virtual training system. The 3D virtual training system includes a 3D display screen and an operating device, and the method includes initializing a virtual medical training session to be displayed on the 3D display screen, where 3D display contents include at least a 3D virtual image of a surgery site. The method also includes obtaining user interaction inputs via the operating device and the 3D display screen, and displaying on the 3D display screen a virtual surgery device and a virtual surgery operation on the surgery site by the virtual surgery device. Further, the method includes determining an operation consequence based on the user interaction inputs and the surgery site, rendering the operation consequence based on the surgery site and effects of the virtual surgery operation, and displaying 3D virtual images of the rendered operation consequence on the 3D display screen.
Abstract:
A three-dimensional (3D) display system is provided for displaying a 3D image. The 3D display system includes a display panel having pixels arranged at a pixel spatial period and a lens grating disposed together with the display panel. The lens grating further includes a plurality of lens units arranged at a first period and a plurality of non-lens units arranged at a second period. The second period is greater than one-third of the first period and less than two-thirds of the first period, and the plurality of lens units and the plurality of non-lens units are arranged such that the lens grating has a different spatial period from the pixel spatial period to reduce Moire fringe effect between the lens grating and the pixels of the display panel.