Abstract:
Systems and method of calibrating a range measurement system for a vehicle mounted on a guideway are disclosed. In some embodiments, a method includes: measuring a first time of transmission (TOT) between a first internal component of an on-board range measurement device and a second internal component of a wayside range measurement device. The first TOT is compared with a first pre-determined time. A health of the range measurement system is determined based on a difference between the first TOT and the first pre-determined time.
Abstract:
A safety communication scheme for a safety-critical system which includes two or more higher level units that have voting capabilities and one or two sets of lower level units that do not have voting capabilities, involves using one channel between the high and low level units for safety and two channels for redundancy.
Abstract:
A positioning and odometry system includes two or more vehicle beacons installed on an end of a vehicle and configured to communicate with one or more guideway beacons installed along a guideway. Processing circuitry is configured to communicate with the one or more vehicle beacons and perform at least one of: determine, before the processing circuitry enters a sleep state, a first vehicle position on the guideway; determine, after the processing circuitry wakes from the sleep state, a second vehicle position on the guideway; determine, after the processing circuitry wakes from the sleep state, any difference between the first vehicle position on the guideway and the second vehicle position on the guideway; determine a third vehicle position on the guideway using range measurements taken at configurable time intervals; and determine a vehicle speed where speed is measured as a change in the third vehicle position over time.
Abstract:
A system for controlling a vehicle includes at least one vehicle network on board the vehicle, first and second controllers coupled to the at least one vehicle network and configured to communicate with each other via the at least one vehicle network, and first and second sensor sets coupled to the at least one vehicle network, and configured to communicate with any of the first and second controllers via the at least one vehicle network. Each of the first and second controllers is configured to, based on data output from any of the first and second sensor sets, control a movement of the vehicle independently of the other of the first and second controllers. The first sensor set is located at a first location on the vehicle, the second sensor set is located at a second location on the vehicle, and the second location is different from the first location.
Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected marker along a direction of movement of the vehicle. A first sensor has a first inclination angle with respect to the detected marker, and a second sensor has a second inclination angle with respect to the detected marker. The controller is configured to compare a time at which the first sensor detected the marker with a time at which the second sensor detected the marker to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor.
Abstract:
A method of determining a position of a vehicle on a guideway includes detecting a position of the vehicle relative to a first reflective positioning element along the guideway. The method also includes detecting a unique identification code of a transponder along the guideway, wherein the transponder is located a first known distance along the guideway from the first reflective positioning element. The method further includes determining the position of the vehicle, using a position determining system, based on a modulated reflection signal received from the transponder, a first non-modulated reflection signal received from the first reflective positioning element, and the first known distance.
Abstract:
A system and method provide the capability to dynamically measure the diameter of a train wheel. An onboard sensor signals detection and loss of detection of a proximity plate having a predetermined length and placed along a direction of travel of the train. A signal generator generates a signal indicating the number of revolutions of the wheel. Based on the sensor signals indicating detection and loss of detection of the proximity plate, the length of the proximity plate, and the corresponding number of wheel revolutions, a controller automatically calculates the wheel diameter.
Abstract:
Disclosed is a method of controlling a load in a railway signaling system, the method comprising providing a first autonomous controller connectable to the load and a second autonomous controller which is redundant with the first controller such that there is no single point of failure; operating the first and second controllers in one of two modes. There is an on-line mode wherein both controllers provide power to the load to control the load such that current through the load is shared between the first and second controllers. There is an off-line mode wherein a single controller does not provide power to the load and the other controller continues to operate on-line to control the load, whereby control of the load is uninterrupted.
Abstract:
A train system that includes a plurality of coupled train units. Each train unit includes a controller VOBC configured to independently determine the location of each VOBC, and a configuration of the train system by comprising a plurality of inputs, a plurality of train lines spanning each train unit and coupled with the controllers at the plurality of inputs and configured to transmit two communication signals between a front end and a rear end of the train system, and a plurality of sets of relay devices connected in series along the plurality of train lines, and each set of relay devices corresponding to each input of the plurality of inputs, and configured to transmit the two communication signals between the front end and the rear end of the train system.
Abstract:
A localization system for a vehicle running on a guideway including portions obscured from satellite view has a number of GNSS receivers placed at strategic locations along the guideway in view of navigation satellites. GNSS transmitters retransmit received GNSS signals along an obscured portion of the guideway. Coded targets are placed at known locations along the guideway. A GNSS receiver on the vehicle picks up GNSS signals directly from the navigation satellites or retransmitted from the GNSS transmitters when on an obscured portion of the guideway. A proximity sensor on the vehicle detects the coded targets. An on-board computer synchronizes the location obtained from the GNSS signals with the location obtained from the proximity sensor. The vehicle is thus able to determine its position even in an obscured portion, such as a tunnel.