Abstract:
An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3 with respect to the rotate-able tube 3, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3. Ramjet 6b is rotated to a greater than another ramjet on the right side of the tube 3. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3 than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3 to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3. Thus, as well as forcing the rotate-able tube 3 to rotate, the ramjets would also push the rotate-able tube sideways. But as the rotate-able tube is pushed sideways, it rotates, and hence the lateral direction of push constantly revolves, causing a spiraling motion of the aircraft when in flight.
Abstract:
An aircraft attitude control configuration enables control surfaces to provide attitude control for an aircraft at hover or low air speed conditions. The aircraft attitude control configuration includes a plurality of thrusters mounted to an aircraft for thrusting air, a first control surface kinematically coupled to the aircraft at a position downstream of a first thruster to enable a first vector force to be generated by a portion of the thrusted air from the first thruster on the first control surface, and a second control surface kinematically coupled to the aircraft at a position downstream of a second thruster, the first and the second control surfaces being displaced symmetrically on opposite sides of a longitudinal axis of the aircraft, the second control surface being configured to be independently and differentially movable with respect to the first control surface to enable a second vector force to be generated by a portion of the thrusted air from the second thruster on the second control surface.
Abstract:
In conformance with the invention, based on the incident conditions and velocity, the steering of the ailerons is weakly negative (b0) or corresponds either to the maximum sharpness of the aircraft (b1), or the optimal lift of the latter (b2).
Abstract:
An aircraft aileron system (10, 10) is comprised of two panels (12, 14, 28, 30, 62, 70) located at the rear portion of the wing (W24, 54), in a spanwise direction and aligned with the wing's trailing edge. The panels are independently hinged at their leading edges and rotate to make angular deflections with respect to the wing. The upper, aileron panel (12, 30, 62) is restricted to upward deflection only from its neutral position and in operation is deployed independently as an aileron. The lower, auxiliary flap panel (14, 28, 70) is capable of both upward and downward deflections from its neutral position, and is deployed independently downward as an auxiliary flap. Both panels are deployed together upwardly only as an aileron. Alternatively, the auxiliary flap panel is capable of downward deployment only, to provide a simpler aileron system. For roll control of an aircraft during cruise, the aileron panel on one side only is deflected up while the aileron panel on the other side remains in its neutral position.
Abstract:
A missile 1 with a missile attachment 2 according to this invention. The missile attachment 2 consists of a tube 3 with a protruding section 4. The protruding section 4 has a concave forward facing surface area 5. The concave curvature is such that it is noticeable when the protruding section 4 is at the highest position on the tube 3. The tube is in the form of a cylindrical tube is fitted to the missile 1 so that it encircles part of the missile and such that it can rotate continuously relative to the missile 1 during flight of the misile.
Abstract:
A system to accurately detect skewing of high lift devices. In one embodiment, the invention provides a system to sense the position of the inboard and outboard ends of each flap. This system preferably detects development of a skewed condition and shuts down the flap drive system before unacceptable aerodynamic or structural conditions occur. In one embodiment, a commercial aircraft has two trailing edge flaps on each wing. Each of the four flaps on the airplane is driven by two ballscrews, one near the outboard end and one near the inboard end of each flap. All ballscrews on all flaps are driven synchronously by a mechanical drive system. By comparing the revolutions of the ballscrews, the differential ballscrew travel can be determined. This differential is a direct measure of flap skew.
Abstract:
A flight control system comprises trailing edge airfoil members pivotally mounted at the trailing edge of each wing of an aircraft and selectively movable on a laterally extending axis between raised and lowered positions for imparting rolling motion to the aircraft. Leading edge airfoil members mounted adjacent the leading edge on each of the wings are movable transversely of the leading edge between a retracted position generally coextensive with the leading edge and an extended position protruding from the leading edge for imparting countervailing aerodynamic forces on the wings to counteract the effects of aeroelastic wing deformation caused in response to operation of the trailing edge airfoil members by increasing the angle of attack of the wing and lift producing surface area of the wing. A pair of actuator mechanisms are mounted on a wing box member at laterally spaced locations for moving the leading edge airfoil members between the retracted and extended positions. The actuator mechanisms are operable simultaneously such that, in one instance, they move the upper and lower control rods in unison to move the leading edge airfoil member between the retracted and extended positions with no change in its angular position relative to the wing and, in another instance, move the leading edge airfoil members to the extended position while exhibiting a nose down position relative to the wing and, in still another instance, move the leading edge airfoil members to the extended position while exhibiting a nose up position relative to the wing.
Abstract:
Aspects relate to aircraft and methods of use for aerodynamic control with winglet surfaces. In an aspect an exemplary aircraft includes a first wing having a first winglet at a distal end of the wing, wherein the first winglet comprises at least a first control surface at a first trailing edge of the first winglet and a second wing having a second winglet at a distal end of the wing, wherein the second winglet comprises at least a second control surface at a second trailing edge of the second winglet.
Abstract:
A morphing wing includes a pantograph mechanism capable of being extended and contracted in a predetermined direction, a plurality of flight feathers attached to the pantograph mechanism, connection members configured to connect flight feathers adjacent to each other among the plurality of flight feathers, a first rotating mechanism configured to rotate the pantograph mechanism around one axis of a plane that intersects the direction, and a second rotating mechanism configured to rotate the pantograph mechanism around another axis of the plane. Each of the plurality of flight feathers is configured so that an angle formed by adjacent flight feathers connected via the connection members increases as the pantograph mechanism extends.
Abstract:
A wing for an aircraft is disclosed having a main wing, a high lift body, and a connection assembly movably connecting the high lift body to the main wing, such that the high lift body can be moved between a retracted position and at least one extended position. The connection assembly includes a drive system having a first drive unit and a second drive unit, wherein the first drive unit has a first input section coupled to a drive shaft, a first gear unit and a first output section drivingly coupled to the high lift body. The second drive unit has a second input section coupled to the drive shaft, a second gear unit, and a second output section drivingly coupled to the high lift body.