Abstract:
An aircraft includes a wing. The wing includes an aileron pivotally connected to a trailing edge of the wing, and a Lam aileron pivotally connected to the trailing edge of the wing. The aircraft includes a motor connected to the Lam aileron and configured to rotate the Lam aileron. The aircraft includes a controller configured to detect a deflection of the aileron from a neutral position, calculate a target deflection for the Lam aileron using the deflection of the aileron, and cause the motor to rotate the Lam aileron to the target deflection.
Abstract:
An aircraft control system is presented. The system includes a wing including a flap track, and a shuttle connected to the flap track and configured to slide along a length of the flap track. The system includes a flap panel pivotally attached to the shuttle at a flap pivot. The flap panel is configured to rotate about the flap pivot. When the shuttle is deployed along a length of the flap track, the shuttle is configured to prevent rotation of the flap panel about the flap pivot, and when the shuttle is withdrawn into a stowed position, the shuttle is configured to allow the flap panel to rotate about the flap pivot.
Abstract:
A mechanical control mixer configured to couple to an aircraft is provided. An axle is mounted to a frame of the mechanical control mixer, and a barrel is configured to rotate about the axle. A central rod is disposed within the barrel. The central rod is configured to rotate with respect to the barrel. A roll control input is connected to the central rod. The roll control input is configured to cause the central rod to rotate within the barrel. Output control rods are connected to the central rod. The output control rods are connected to at least one control surface of the aircraft. An air brake input is connected to the barrel. The air brake input is configured to cause the barrel to rotate about the axle to move at least one of the output control rods.
Abstract:
A building includes a data center to house computing equipment including computers and servers. The data center stores data. The building also includes a multipurpose center that houses office spaces, conference rooms and meeting rooms. The data center and multipurpose center differ in function but share resources. The data center is expandable using a configuration of a control room, an electrical room and a mechanical room. Additional data center floors adjoin existing structures to increase available space in a linear manner.
Abstract:
A system and related method for the exchange of information, data and instructions between one or more network administrators and one or more network infrastructure devices via one or more media exchanges. Devices are managed using a social media agent including a session agent that translates media messages into network device content and vice versa while maintaining context. Particular media interfaces may be selected for messaging dependent upon the particular message to be exchanged. Shorthand may be used to facilitate messaging through media of interest.
Abstract:
A mechanical control mixer configured to couple to an aircraft is provided. An axle is mounted to a frame of the mechanical control mixer, and a barrel is configured to rotate about the axle. A central rod is disposed within the barrel. The central rod is configured to rotate with respect to the barrel. A roll control input is connected to the central rod. The roll control input is configured to cause the central rod to rotate within the barrel. Output control rods are connected to the central rod. The output control rods are connected to at least one control surface of the aircraft. An air brake input is connected to the barrel. The air brake input is configured to cause the barrel to rotate about the axle to move at least one of the output control rods
Abstract:
Disclosed are techniques for simulating and correcting the mask shadowing effect using the domain decomposition method (DDM). According to various implementations of the invention, DDM signals for an extreme ultraviolet (EUV) lithography mask are determined for a plurality of azimuthal angles of illumination. Base on the DDM signals, one or more layout designs for making the mask may be analyzed and/or modified.
Abstract:
A building includes a data center to house computing equipment including computers and servers. The data center stores data. The building also includes a multipurpose center that houses office spaces, conference rooms and meeting rooms. The data center and multipurpose center differ in function but share resources. Computing equipment in the data center generates a lot of heat energy that is absorbed by the air. An air circulating system transfers the heated air from the data center to the multipurpose center. A fluid circulation system uses fluid to transfer heat energy to locations within the multipurpose center and also outside, such as a parking lot.
Abstract:
A system and process for concentrating hydrocarbons in a bitumen feed comprising bitumen, water and solids. The system comprises an inclined plate separator, a hydrocarbon cyclone and a centrifuge. The inclined plate separator separates the bitumen feed into a first overflow stream and a first underflow stream, the first overflow stream having a first bitumen concentration greater than that of the first underflow stream. The hydrocarbon cyclone separates the first underflow stream into a second overflow stream and a second underflow stream. The centrifuge separates the second overflow stream into a third overflow stream and a third underflow stream, the third overflow stream having a third bitumen concentration that is greater than that of the third underflow stream.
Abstract:
An aircraft aileron system (10, 10) is comprised of two panels (12, 14, 28, 30, 62, 70) located at the rear portion of the wing (W24, 54), in a spanwise direction and aligned with the wing's trailing edge. The panels are independently hinged at their leading edges and rotate to make angular deflections with respect to the wing. The upper, aileron panel (12, 30, 62) is restricted to upward deflection only from its neutral position and in operation is deployed independently as an aileron. The lower, auxiliary flap panel (14, 28, 70) is capable of both upward and downward deflections from its neutral position, and is deployed independently downward as an auxiliary flap. Both panels are deployed together upwardly only as an aileron. Alternatively, the auxiliary flap panel is capable of downward deployment only, to provide a simpler aileron system. For roll control of an aircraft during cruise, the aileron panel on one side only is deflected up while the aileron panel on the other side remains in its neutral position.