Abstract:
The present invention relates to an anchoring method and device, for anchoring a pipeline to a seabed. The pipeline may extend from a well which is located on a seabed to a floating platform. Tension forces which are exerted on the pipeline by the platform are diverted into the seabed by the anchoring device.
Abstract:
A torsionally installed anode for galvanic corrosion protection and a combination torsionally installed anode and earth penetrator is disclosed. The anode may be screwed (i.e., torsionally installed) into the earth (e.g., the seabed, the riverbed, or the ground) so as to constitute a sacrificial anode. The anode may serve the dual purpose of protecting an underwater metallic article (e.g., a pipeline or the like) from corrosion, and of supporting the metallic article above the seabed.
Abstract:
A ground anchor includes a saddle to receive and support buried pipe and having an anchor rod that will bend from upward forces acting on the pipe yet still retaining the pipe in the ground.
Abstract:
A system and method for securely cradling a subsea pipeline is claimed that lands on one side of the pipeline, is embedded into the sea floor, reaches under the pipeline, positions the cradling structure, and then lifts the pipeline. The system typically comprises a gravity driven pile based device, comprising a pile tower, a roller carriage assembly, and a jacking assembly that engages the roller carriage assembly and pile tower rails.
Abstract:
A method of securing a pipeline to the bed of a body of water includes moving an underwater vehicle selectively, on the bed of the body of water, along the pipeline; transporting a plurality of fastening devices on the underwater vehicle; and driving each fastening device partly into the bed of the body of water, close to the pipeline, by a handling device mounted on the underwater vehicle, to confine the pipeline between the bed of the body of water and the fastening device.
Abstract:
For regulating the lateral buckling of a section of pipe, at least one device permanently applies a force to a point on the section of pipe. The force is preferably applied substantially horizontally and perpendicular to the axis of the pipe. Preferably, two of the devices that apply equal and opposing forces are positioned at a distance from each other along the section of a pipe. Each device comprises a clamp, a cable, a return device and a buoy or a weight.
Abstract:
A flowline for hydrocarbon which is capable of being reeled and which is unreeled for being laid on the seabed using the reeled lay method is comprised of successive pipe sections having opposing ends which are joined by an anchor collar that is butt welded to the opposing ends. The pipe sections have a jacket on the exterior of the pipe sections, but the pipe sections are able to be reeled. Anchor collars are affixed by butt welding between the ends of adjacent pipe sections. Each anchor collar has a fixture or protrusion radially outward which has an outer diameter less than or at least not more than the outer diameter of the pipe section jacket. The flowline has the same inner diameter at the pipe sections and the collar, and the pipe has the same outer diameter as the collar, while the protrusion protrudes outward from the exterior of the collar. The flowline is anchored on the seabed by unreeling it from a spool, applying a clamp to the collar before delivering it to the seabed, and anchoring the clamp to the seabed. The jacket may expose the fixture or protrusion or may initially cover it and be removed to enable the clamping.
Abstract:
Gas Subsea Transmission System (GSTS) is a new method for transferring large quantities of natural gas between marine distances through the oceans. Its purpose is to provide a safer, faster and more financially advantageous alternative to gas transmission via LNG.The GSTS's main part is a Submersible Suspension Pressure-equaliser Pipeline (SSPP). It is a long pipe with a large diameter which has a high capacity of gas transmission. This pipe is kept submersible and suspended in deep waters by its special mooring system. It is made from steel pipe which is reinforced by internal concrete rings.The basic concept of SSPP is to cancel the internal pressure of the gas pipeline with the external hydrostatic water pressure by varying the pipe environment. These conditions lead to the possibility of a large diameter pipeline resulting in efficient, high capacity gas transmission. SSPP mooring system is able to change the pipe level to the right depth base on the changes in gas pressure and equalise the external and internal pressures.The GSTS has offshore stations that separate the SSPP into shorter segments. The pipe can be operated, maintained, installed and inspected from these points. During normal operation, these offshore stations are capable of staying submerged under water. This design feature means that they would be protected from adverse surface conditions.