Abstract:
Apparatus and method for handling a fluid-tight flange coupling between a first and a second conduit component while maintaining the fluid integrity of the coupling. The apparatus includes a gripping mechanism configured to straddle the flange coupling and grip both of the first and second conduit components. The gripping mechanism is mounted on a lifting frame able to bear the loadings upon the gripped components during a moving operation. The apparatus includes a base frame with a gripping mechanism to receive the flange coupling. The coupled components are gripped on each side of the flange coupling to maintain the fluid integrity of the flange coupling.
Abstract:
The invention concerns an assembly for installation of an underwater structure on the sea floor, said sea floor being covered with particles capable of being driven in suspension in the water above said sea floor, the mounting of said underwater installation capable of being implemented by an underwater robot driven by propulsion means, said propulsion means being capable of displacing the sea floor water and said suspended particles around said installation; said assembly comprising means (22, 26) for covering said sea floor surrounding said installation with a protective blanket (10) adapted to confine said particles on said sea floor.
Abstract:
A method is provided for cutting and removing underwater pipelines. The method comprises (a) determining the position of the underwater pipeline to be removed;(b) positioning, on the line a guide for positioning a cutter and a device for recovering the cut pipe sections, the guide being able to be repositioned along the line and being stably connected to a boat intended to collect the recovered sections; (c) guided positioning of the cutter and guided positioning of the device for recovering the cut pipe; (d) cutting of the pipe section of predetermined length and subsequent removal of the section by using the device for recovering the cut pipe; (e) transfer of the pipe section recovered by the recovery device to the boat; and (f) repositioning of the guide along the remaining line portion to be removed and repetition of the preceding steps(c) to(e) until the underwater pipeline has been completely removed. An apparatus for implementing this method is also provided.
Abstract:
Underwater pipelines connected to at least one point on a coastline are constructed by means of a pipelaying vessel associated with an independent underwater vehicle mounted on caterpillar-tracks and capable of traveling along the sea bed. From within the vehicle, pipe sections can be assembled and rejected as the vehicle moves forward. The pipe sections pass through a wall of the vehicle and into the sea, through a port which is provided with a plurality of inflatable annular sealing rings that selectively sealingly bear against the exterior of the pipeline. One of these sealing rings is associated with an annular piston, and a jack acts between this piston and the vehicle to provide the propulsive force for ejecting the pipe sections from the vehicle. Potential applications include mining operations, off-shore installations and intercontinental tunnels.
Abstract:
A water environment robotic system and method has a buoyancy configuration which can be selectively altered. The system includes an underwater robotic vehicle and a buoyancy module that is configured to be selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether is connected to the buoyancy module and a motor is operatively connected to the tether and is configured to extend and retract the tether and buoyancy module. The tether can be extended and retracted to extend and retract the buoyancy module. Extending and retracting the buoyancy module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the arrangement of the system. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered.
Abstract:
Apparatus and methods are described for subsea pipeline servicing, including line-pack testing, physical integrity testing, recovery of damaged sections of pipelines, and product removal from subsea structures. In one embodiment of the invention, a subsea pipeline service skid is provided including at least one sample collection bladder affixed to the skid and in fluid communication with a skid mounted pump dimensioned to pull a sample from the subsea pipeline. In another embodiment, a product removal bladder is provided for removal of the hydrocarbons from a subsea structure.
Abstract:
A method and apparatus for connecting underwater conduits and more specifically, to a method and apparatus which is capable of performing the diverless connection of underwater flowlines and connection of these flowlines to underwater structures such as flowline bases, xmas trees and templates. The connection of underwater conduits facilitated by the use of a remotely operated vehicle and connection apparatus both being launchable and recoverable by a support vessel. The connection apparatus adapted to mount on at least one of the underwater conduits and the connection apparatus allowing for docking of the remotely controlled vehicle which then captures and draws a second conduit to form a continuous flowline.
Abstract:
A tool is provided for removing concrete from underwater pipes which tool is comprised of a frame or member having two coaxially opposed concrete removal jets mounted thereon, whereby the opposing forces of the two jets cancel out the thrusting effect of one against the other to thereby provide a device which does not require massive rigid equipment to hold the jets or nozzles in place adjacent to the pipe.
Abstract:
A two-part, selectively dockable robotic system having counterbalanced stabilization during performance of an operation on an underwater target structure is provided. The robotic system includes a first underwater robotic vehicle that is sized and shaped to at least partially surround the underwater target structure. A second underwater robotic vehicle is sized and shaped to at least partially surround the underwater target structure and selectively dock with the first underwater robotic vehicle. The first and second robotic vehicles include complimentary docking mechanisms that permit the vehicles to selectively couple to each other with the underwater target structure disposed at least partially therebetween. One robot includes a tool that can act upon the target structure and the other robot includes a stabilization module that can act upon the target structure in an opposite manner in order to counterbalance the force of the tool.