Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate defining a plurality of discharge cells. Phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the first substrate. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed within an area corresponding to each discharge cell. A distal end of each protrusion electrode includes an indentation such that a gap is formed between the pair of opposing protrusion electrodes, and an aperture is formed in each protrusion electrode.
Abstract:
A plasma display panel including: a first substrate; a plurality of first electrodes and a plurality of second electrodes, the first and second electrodes being disposed in parallel on the first substrate; a first dielectric surrounding the first electrodes and the second electrodes and connecting the first electrodes and the second electrodes; a passivation layer on the first dielectric and on the first electrodes and the second electrodes; a second substrate facing the first substrate; a plurality of third electrodes on the second substrate and crossing the first electrodes and the second electrodes; and a second dielectric on the third electrodes.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a front substrate, a rear substrate facing the front substrate, a barrier rib that is positioned between the front substrate and the rear substrate to partition a discharge cell, a first electrode and a second electrode that face each other to be spaced apart from each other at the discharge cell therebetween, and a dielectric layer that covers the first electrode and the second electrode. At least one of the first electrode and the second electrode includes a depression formed on a facing surface of the first electrode and the second electrode. The dielectric layer includes a groove formed between the first electrode and the second electrode.
Abstract:
A plasma display and a driving method for the plasma display. The plasma display is constructed with a control type plasma display panel having a closed barrier rib configuration, and each pair of column-wise neighboring discharge cells have different electrode arrangement. In the driving method, when the control type plasma display panel has an alignment error for a first electrode and a second electrode, a scan pulse having a first width is applied to an odd-numbered first electrode, and the scan pulse having a second width that is different from the first width is applied to an even-numbered first electrode.
Abstract:
A plasma display panel includes first and second substrates facing and spaced apart from each other, barrier ribs disposed between the first and second substrates to define discharge cells, address electrodes formed on the first substrate and extending in a first direction to correspond to the discharge cells, first and second electrodes formed on the second substrate and extending in a second direction crossing the first direction to correspond to the discharge cells, and a dielectric layer formed on the second substrate to cover the first and second electrodes. The first and second electrodes each include a plurality of bus lines of which some of the bus lines form discharge gaps at a central portion of the respective discharge cells. The dielectric layer is provided with grooves formed within the discharge gaps to decrease the requisite firing voltage and improve the light emission efficiency of the panel.
Abstract:
A plasma display panel includes: a front and a rear substrate which face each other and form a discharge space; address electrodes arranged on an upper surface of the rear substrate; a first dielectric layer formed on the upper surface of the rear substrate and covering the address electrodes; partition walls formed on the upper surface of the rear substrate and partitioning the discharge space to form discharge cells; a fluorescent layer formed on an upper surface of the first dielectric layer and on sidewalls of partition walls, and forming inner surfaces of the discharge cells; first and second sustain electrodes formed on a lower surface of the front substrate in each of the discharge cells in a direction perpendicular to the address electrodes; and a second dielectric layer formed on the lower surface of the front substrate to cover the sustain electrodes, and having protruding portions formed between the sustain electrodes and protruding into discharge cells.
Abstract:
A plasma display panel (PDP) includes first and second substrates opposing one another with a predetermined gap therebetween. The PDP also includes address electrodes formed on a surface of the first substrate opposing the second substrate, and barrier ribs formed in the gap between the first and second substrates. The barrier ribs define discharge cells, and a phosphor layer is formed in each of the discharge cells. Further, discharge sustain electrodes made of a metal material are formed on a surface of the second substrate opposing the first substrate. The discharge sustain electrodes include line sections, each pair of which is formed corresponding to each discharge cell, and extensions are formed extending from the line sections into each of the discharge cells to define openings. Also, indentations are formed in distal ends of each of the extensions such that discharge gaps of differing sizes are formed between each pair of the extensions.
Abstract:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
Abstract:
Provided is a front substrate of a plasma display panel. The front substrate includes a front glass substrate; a number of pairs of first electrodes which are formed in parallel with each other on the front glass substrate, and are made of a transparent conductive material; a number of pairs of second electrodes which are formed in parallel with each other on the front glass substrate, and are made of a material whose specific resistance is relatively smaller than that of the material of the first electrode; and a number of auxiliary electrodes which electrically connects the first electrodes with the second electrodes, to thereby make an area of the first electrode contribute to brightness and to thus raise a contrast ratio and improve a luminous efficiency greatly.
Abstract:
A plasma display panel includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted in the gap between the first substrate and the second substrate to define a plurality of discharge cells. Phosphor layers are formed in each of the discharge cells. Discharge sustain electrodes are formed in a direction intersecting the address electrodes and paired such that each of the discharge cells is in communication with a pair of the discharge sustain electrodes. Each of the discharge sustain electrodes include extension sections that extend into the discharge cells such that a pair of opposing extension sections is formed in each of the discharge cells. Distal ends of each of the extension sections extended from at least one of each pair of the bus electrodes are formed having a concave section.