Abstract:
A method for wirelessly transmitting geographic coordinate information and a system and apparatus implementing the method. The method may include obtaining a latitude coordinate and a longitude coordinate, correlating a first radio frequency to the latitude coordinate, correlating a second radio frequency to the longitude coordinate, transmitting a signal at the first radio frequency, and transmitting a signal at the second radio frequency.
Abstract:
A system including an encoder, multiple sensing elements and control logic. The encoder has a pole pitch and is configured to rotate in a direction of rotation. The multiple sensing elements are situated along the direction of rotation and span at least half the length of the pole pitch. The control logic is configured to receive signals from the multiple sensing elements based on the encoder in a static position and obtain a switching point based on the signals.
Abstract:
A method for wirelessly transmitting geographic coordinate information and a system and apparatus implementing the method. The method may include obtaining a latitude coordinate and a longitude coordinate, correlating a first radio frequency to the latitude coordinate, correlating a second radio frequency to the longitude coordinate, transmitting a signal at the first radio frequency, and transmitting a signal at the second radio frequency.
Abstract:
A system including an encoder, multiple sensing elements and control logic. The encoder has a pole pitch and is configured to rotate in a direction of rotation. The multiple sensing elements are situated along the direction of rotation and span at least half the length of the pole pitch. The control logic is configured to receive signals from the multiple sensing elements based on the encoder in a static position and obtain a switching point based on the signals.
Abstract:
A measuring device for determining a position and/or a speed includes a scale having marks arranged at spacings from one another, and a scanning head, with the scale and the scanning head being arranged for movement relative to one another along a movement direction. The scanning head is constructed to determine a first spacing of the scanning head in the movement direction relative to a first one of the marks, and a second spacing of the scanning head in the movement direction relative to a second one of the marks, with the position and/or the speed being determined on the basis of the first spacing and the second spacing.
Abstract:
A contactless switch module, which is actuatable between a closed circuit position and an open circuit position, a plurality of magnetic field sensing sensors, and a plurality of magnets. The switch also includes a multi-channel switch controller. Each one of the plurality of magnetic field sensing sensors is communicatively coupled to an input channel of the multi-channel switch controller. The multi-channel switch controller is configured to determine a switch state based at least upon the respective states of its input channels.
Abstract:
Apparatus and methods for determining a linear position of a moveable member having a code disposed thereupon. The code includes a succession of data fields having at least n characters and including a frame-synch symbol at predetermined intervals in the code. A sensor reads the code on a predetermined portion of the moveable member. The predetermined portion of the member includes code having at least one frame-synch symbol and n characters. The sensor transmits a data signal as a function of the read code. A processing device is coupled with the sensor to receive the data signal. The processing device transmits a position signal as a function of the data signal, with the position signal being indicative of the linear position of the moveable member.
Abstract:
A method is provided for testing and setting the position of a position sensor for a transmission. A shift control shaft is provided, and the position sensor is positioned to align with the shift control shaft, and provide a shift position output. A position sensor testing device is installed to test position rotation of the position sensor as the shift control shaft is moved through shift positions. The tested position rotation of the position sensor is compared with a predetermined window of accurate positioning for the position sensor. Finally, the position of the position sensor is set based on the comparison.
Abstract:
A method is provided for testing and setting the position of a position sensor for a transmission. A shift control shaft is provided, and the position sensor is positioned to align with the shift control shaft, and provide a shift position output. A position sensor testing device is installed to test position rotation of the position sensor as the shift control shaft is moved through shift positions. The tested position rotation of the position sensor is compared with a predetermined window of accurate positioning for the position sensor. Finally, the position of the position sensor is set based on the comparison.
Abstract:
Apparatus and methods for determining a linear position of a moveable member having a code disposed thereupon. The code includes a succession of data fields having at least n characters and including a frame-synch symbol at predetermined intervals in the code. A sensor reads the code on a predetermined portion of the moveable member. The predetermined portion of the member includes code having at least one frame-synch symbol and n characters. The sensor transmits a data signal as a function of the read code. A processing device is coupled with the sensor to receive the data signal. The processing device transmits a position signal as a function of the data signal, with the position signal being indicative of the linear position of the moveable member.