Abstract:
Systems and techniques are disclosed for framing and processing single-carrier and/or OFDM transmit-diversity transmissions through delay-spread channels, as well as for deframing and processing the corresponding merged signals, received from a plurality of antennas, to estimate the transmitted information. Time-domain processing techniques may be used for both types of transmissions to create multiplexed dual signal-unit pairs, particularly when cyclic prefixes are needed to reduce delay-spreading effects. Repetitive pilot words may be employed in burst preambles and/or in payloads of transmission bursts to minimize or provide flexibility in the amount of bandwidth that is consumed to generate good channel response estimates under changing channel conditions.
Abstract:
Combining signals includes receiving first signals having a first frequency and second signals having a second frequency. A first weight reflecting a signal-to-noise ratio associated with a first signal is determined for each first signal, and a first signal output is generate from the first signals in accordance with the first weights. A second weight reflecting a signal-to-noise ratio associated with a second signal is determined for each second signal, and a second signal output is generate from the second signals in accordance with the second weights. The first signal output and the second signal output are combined to yield a combined signal output.
Abstract:
The present invention provides a receiving apparatus and a receiving method in which frequency of calculation such as weighting multiplication can be reduced and memory capacity of a frame buffer can be reduced. To this end, reference phase information and data are separated by a reference phase inverse spreading unit (106) and a data portion inverse spreading unit (107), respectively. A weighting coefficient calculating unit (115) calculates weighting coefficients based on SNR values as transmission line information from an SNR calculating unit (114), and sends thus calculated weighting coefficients to a multiplier (109) where phase correction values based on the reference phase information are multiplied by the weighting coefficients to be correction coefficients. A multiplier (111) multiplies reception data from the data portion inverse spreading unit (107) by the correction coefficients, and output data from the multiplier (111) is restricted in bit width by the bit width restricting unit (112). Output data which is restricted in bit width from a coherent receiving unit (101) and that of a coherent receiving unit (121) are added by an adder (117), and output data from the adder (117) is sent to a frame buffer (118) to be stored. Then, output data from the frame buffer (118) is sent to a soft decision input error correcting unit (120).
Abstract:
In a mobile communication receiving apparatus in which signals received on a plurality of receiving paths (branches) are combined by a combiner, correlation between noise signals contained in the signals received on respective ones of the branches is detected by a noise correlation calculating unit, and control is exercised so as to maximize signal-to-noise power ratio of the combined signal based upon the correlation calculated in the noise correlation calculating unit. Signal-to-noise power ratio can be maximized even if noise components contained in respective ones of the branch signals are mutually correlated.
Abstract:
Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals. Other embodiments of the present invention allow for the incoming signals from the multiple antennas to pass through the baseband unit uncombined, where the incoming signals may have different data formats.
Abstract:
This invention provides a signal processing method for enhancing the communication quality and increasing the communication capacity by reducing the effects of interference and noises with the nice beam pattern. The signal processing method provides a beam pattern by computing an eigenvector corresponding to the maximum eigenvalue of an autocorrelation matrix of received signals in an antenna array system. The inventive signal processing method introduces a simplified computational technique for generating a nice beam pattern having its maximum gain along the direction of the wanted signal and maintaining the gain toward the direction of the interfering signals in as low a level as possible.
Abstract:
An apparatus for combining signals includes RAKE receivers 10, 20, noise-power measuring apparatuses 30, 40, and a branch combiner 50. The RAKE receivers 10, 20 are the same in number as the antenna branches, and each RAKE receiver combines received signals by using a weight based on an amplitude of each received signal. Each of the noise-power measuring apparatus 30, 40 measures a sum of an interference power and a background-noise power in an output signal from each RAKE receiver. The branch combiner 50 multiplies the output signal from each RAKE receiver by an inverse of the sum measured by the noise-power measuring apparatus, and then adds up the value obtained by each multiplication.
Abstract:
The present invention is directed to a radio communications apparatus with combining diversity in which received radio signals are weighted appropriately to reduce an error in demodulation and improve in communication quality. In the signal combining diversity radio communications apparatus, the digital reception signals of an intermediate frequency, output from the reception circuit, are demodulated by demodulation circuits into digital demodulation signals of the baseband. The digital demodulation signals are input to the multiplication circuits. The multiplication circuits multiply the digital demodulation signals by the weight coefficients, which are generated by weight coefficient generation circuits and corresponding to the digital demodulation signals, based on C/N ratio detection signals, in order to weight the digital demodulation signals. The weighted demodulation signals are added together by a digital addition circuit. Consequently, the received signals can be weighted appropriately to thereby improve in communication quality.
Abstract:
For combining diversity path signals comprising symbols each modulated in accordance with one of a plurality of orthogonal (e.g. Walsh) functions, a diversity combiner includes, for each path, a demodulator to demodulate each modulated signal symbol in accordance with a selected one of the orthogonal functions, a phase estimator to estimate a phase rotation and amplitude of the diversity path signal from the demodulated signal, and a complex signal multiplier to derotate the phase and weight the amplitude of the diversity path modulated signal in dependence upon the estimated phase rotation and amplitude. The combiner sums real parts of the phase-derotated and weighted modulated signals of the diversity paths, demodulates the combined signal in accordance with all of the orthogonal functions, and selects the maximum demodulated signal for each symbol thereby to determine for the symbol the selected one of the orthogonal functions.
Abstract:
A diversity reception device which weights in proportion to the reception level and combines a plurality of reception signals, includes a phase demodulator for demodulating the phase of the reception signal, a converter to output the sine and cosine elements of the reception signal, a sine element adder to add up sine element of each reception signal, and a cosine element adder to add up cosine element of each reception signal. The converter fetches and outputs predetermined values on sine and cosine elements of the reception signal upon input of the reception signal's reception level and phase data that is sent from phase demodulator. Therefore, the present device does not require expensive electronic circuits and can be made of small digital circuits suitable for IC including a memory.