Abstract:
A physical identification data (PID) addressing method using a wobble signal, a wobble address encoding circuit, a method and circuit for detecting the wobble address and a recording medium therefor. Groove address information indicating physical identification information is phase modulated using a wobble clock signal and recorded in one of the two walls of a groove track, and land address information is phase modulated using a wobble clock signal obtained by shifting the phase of the former wobble clock signal and recorded in the other wall. That is, address information is phase modulated and recorded in each track using the wobbles having a phase difference of 90° between adjacent tracks so that a sum of wobble signals from the adjacent tracks can be a quadrature phase shift keying (QPSK) signal. Therefore, more data can be recorded in the recording medium, and since an interval in which a wobble signal disappears is not caused, recovery of a wobble clock signal can be advantageously performed.
Abstract:
At least part of a light beam reflected from an optical disc is divided into first through fourth light areas in directions corresponding to the radial and tangential directions of the disc, and first through fourth detection signals are output from the light areas. The first through fourth light areas are ordered counterclockwise or clockwise. A phase difference is obtained between a first sum signal obtained by summing the first and third detection signals and a second sum signal obtained by summing the second and fourth detection signals and first and second phase difference signals are output based upon the phase difference. The phase difference signals are summed to generate an optical recording/reproducing system monitoring signal for system adjustment even for high density optical discs, the monitoring signal being proportional to the degrees of a radial tilt, tangential tilt, a defocus, or a detrack.
Abstract:
An error signal detection apparatus for an optical recording/reproducing system including a light source emitting a light beam and an objective lens focusing the light beam to form a light spot on a recording medium, the apparatus including: a photodetecting unit dividing at least a part of the light beam passed through the objective lens after being reflected/diffracted from an information stream of the recording medium into light beam portions, and detecting the light beam portions; and a signal processor detecting phase differences between detection signals from the light beam portions to detect a tangential error signal, a defocus error signal, and/or a radial tilt error signal.
Abstract:
A method of detecting a servo error, an apparatus therefor, a disk which maintains quantity of a servo error signal, a method of controlling a servo of an apparatus for recording data on and reproducing data from a disk, a method of detecting the tracking error, and a method of detecting tilt error of the apparatus. The apparatus for recording data on and reproducing data from the disk in which a recording area is divided into sectors, each sector has a header for indicating an address, each header has a first header and a second header which are recorded to deviate from the center of the track in opposite directions, and the first header and the second header have address areas in which the addresses of sectors are recorded and synchronous signal areas in which synchronous signals for detecting the address signals recorded in the address area are recorded, includes a reproducing signal generator, a sum signal disk, a header area detector, a first synchronous signal level detector a first, a second synchronous signal level detector, and a balance calculator for calculating the balance of the magnitude Ivfo1 of the first synchronous signal detected by the first synchronous signal level detector and the magnitude Ivfo3 of the second synchronous signal detected by the second synchronous signal level detector.
Abstract:
An error signal detection apparatus for an optical recording/reproducing system which detects a tilt error signal and/or tracking error signal, based on the phase characteristics of light reflected and diffracted from a recording medium, and a method therefor. The error signal detection apparatus includes multiple photodetectors and a circuit unit for detecting an error signal by processing detection signals generated by each photodetector The the photodetectors are arranged in a matrix wherein a row or column of the matrix is parallel to a direction corresponding to a direction of an information stream on the recording medium. A circuit unit compares the phases of the detection signals of the inner and/or outer light receiving portions arranged in the same row or of detection signals from diagonal positions on the matrix to output at least one of a tilt error signal and a tracking error signal based on the phase comparison.
Abstract:
A method of, and an apparatus for detecting a radial tilt of a disc. Phases of summed signals obtained from signals that external light-receiving units of an octant photo diode receive are compared to generate an external phase comparison signal Do. Phases of other summed signals obtained from other signals, that internal light-receiving units of the octant photo diode receive, are compared to generate the internal phase comparison signal Di. The radial tilt is detected based on the internal and external phase comparison signals Di and Do obtained when a laser beam crosses a track formed the disc. Thus, the radial tilt can be more precisely detected.
Abstract:
A method and apparatus for tracking error detection in an optical disk reproduction system. The tracking error detecting apparatus generates a tracking error signal as a difference signal of optical detection signals generated by more than two optical detectors positioned along a diagonal line from a track center and includes binarizers which binarize each output of the optical detectors, phase locked loops (PLLs) which generate respective clock signals synchronized with the outputs of each of the binarizers, a phase difference detector which detects a phase difference between the synchronized signals output from the PLLs, and low-pass filters which filter the output of the phase difference detector to output the result as the tracking error signal. The tracking error detecting apparatus generates a tracking error signal which is not dependent on the lengths of pits or marks recorded on an optical disk, enhancing the reliability of the tracking error signal.
Abstract:
An error signal detection apparatus for an optical recording/reproducing system including a light source emitting a light beam and an objective lens focusing the light beam to form a light spot on a recording medium, the apparatus including: a photodetecting unit dividing at least a part of the light beam passed through the objective lens after being reflected/diffracted from an information stream of the recording medium into light beam portions, and detecting the light beam portions; and a signal processor detecting phase differences between detection signals from the light beam portions to detect a tangential error signal, a defocus error signal, and/or a radial tilt error signal.
Abstract:
An apparatus for and a method of producing a push-pull tracking error signal in an optical disc system having four light-receiving sections A, B, C, and D arranged in a radial direction of the optical disc. Pairs of signals PA, PB, PC and PD, corresponding to light receiving sections A, B, C and D, respectively are differentially combined to provide differential signals. One differential signal is filtered, amplified and differentially combined with another differential signal to output a tracking error signal. Accordingly, distortion of the tracking error signal during jumping to a desired track and distortion of the tracking error signal due to a defect of the optical disc are prevented.
Abstract:
A disk area type detection method and apparatus, the disk area type detection method including detecting the difference between a side push-pull (SPP) 1 signal and an SPP2 signal; and determining whether an area is a storage medium related information area or a user data area on the disk, based on the detected difference. According to the method and apparatus, the user data area and the storage medium related information area of the disk can be easily distinguished, allowing phase locked loop (PLL) control to be performed appropriately.