Abstract:
A method of supporting operation of sleep mode in a wideband radio access system is disclosed. More specifically, a mobile subscriber station (MSS) which determines a frame offset information for synchronizing listening windows of at least one MSS that is in sleep mode, and transmits the determined framed offset information to at least one MSS.
Abstract:
A method of supporting operation of sleep mode in a wideband radio access system is disclosed. More specifically, a mobile subscriber station (MSS) which determines a frame offset information for synchronizing listening windows of at least one MSS that is in sleep mode, and transmits the determined framed offset information to at least one MSS.
Abstract:
The present invention is related to transmitting quality of service (QoS) information of a target base station for admitted service flows during a handover operation. The invention comprises providing a service to a mobile station from a serving base station and receiving at the serving base station a handover request from the mobile station. The serving base station the provides a handover notification to a target base station, wherein the handover notification comprises a QoS parameter associated with the service. The serving base station then receives from the target base station a handover notification response, wherein the handover notification response comprises service level prediction information that is determined in response to the QoS parameter associated with the service. Finally, the serving base station provides a handover response to the mobile station, the handover response comprising the service level prediction information.
Abstract:
The present invention relates to allocating data regions in an orthogonal frequency division multiplexing access system. The present invention comprises receiving a message comprising information for locating a data region of a data map allocated to a mobile station identified in the message for transmitting and receiving information, and identifying the data region of the data map allocated to the identified mobile station by reading the received message, wherein the data region is identified independent of identifying data regions of another data map.
Abstract:
A method of supporting a hybrid automatic retransmission request (HARQ) in an orthogonal frequency division multiplexing access (OFDMA) radio access system is disclosed. Preferably, the method comprises receiving a downlink data frame comprising a data map information element and a data burst comprising a plurality of layers, wherein each layer is encoded with a corresponding channel encoder, and wherein the data map information element is configured to support multiple antennas to achieve space time transmit diversity by providing control information associated with each one of the plurality of layers, wherein the control information comprises allocation of acknowledgement status channels corresponding to the plurality of layers, and transmitting in an uplink data frame a plurality of acknowledgement status, each acknowledgement status being associated with whether a corresponding layer of the plurality of layers is properly decoded.
Abstract:
A method of performing a ranging process between a base station and a mobile station in sleep mode in a wireless access system, wherein the base station provides the mobile station with an initial notification of a periodic ranging time that occurs during a sleep time interval and during which the mobile station is to perform the ranging process, the initial notification included in a first message, the first message indicating whether the mobile station should terminate sleep mode to receive downlink data, and wherein the base station provides the mobile station with subsequent notifications of periodic ranging times that occur during the sleep time interval, the subsequent notifications indicated in a second message, the second message transmitted to the mobile station as part of the ranging process such that the mobile station performs a plurality of ranging processes within the sleep time interval.
Abstract:
A method of performing a ranging process between a base station and a mobile station in sleep mode in a wireless access system, wherein the base station provides the mobile station with an initial notification of a periodic ranging time that occurs during a sleep time interval and during which the mobile station is to perform the ranging process, the initial notification included in a first message, the first message indicating whether the mobile station should terminate sleep mode to receive downlink data, and wherein the base station provides the mobile station with subsequent notifications of periodic ranging times that occur during the sleep time interval, the subsequent notifications indicated in a second message, the second message transmitted to the mobile station as part of the ranging process such that the mobile station performs a plurality of ranging processes within the sleep time interval.
Abstract:
A method of associating a mobile station to a base station in a wireless communication system comprises transmitting to a serving base station a scanning request message comprising an association indicator. The method also comprises receiving from the serving base station a scanning response message comprising a rendezvous time associated with a neighboring base station for initiating ranging with the neighboring base station, wherein the serving base station communicates an association notification to the neighboring base station, the association notification comprising the rendezvous time. The method also comprises associating with the neighboring base station by transmitting a ranging request after passing of the rendezvous time determined from a transmission time of the scanning response message from the neighboring base station, wherein the rendezvous time is associated with a time the neighboring base station is expected to provide a non-contention based ranging opportunity for the mobile station.
Abstract:
A method for forming metal line of a semiconductor device in which, if the aspect ratio of the contact holes is big, contact holes are buried with a CVD method using the HDP method, and the line process is simplified to improve the reliability is disclosed, including the steps of forming an insulating film having a contact hole on a semiconductor substrate; forming a barrier metal layer on the insulating film including the contact hole; and forming a metal line layer on the barrier metal layer with a CVD method using a high density plasma.
Abstract:
The present invention provides a process for forming an MOS semiconductor device having an LDD structure, which includes a forming a gate electrode by first etching a conductive layer to a certain depth by an RIE process and by second etching the conductive layer by an isotropic plasma etching process. In forming the source/drain of the device, an n.sup.+ source/drain and an n.sup.- source/drain are formed in a sequential manner. The gate line first is formed with its width over-sized compared with its channel length, and finally is formed to its final size.