Abstract:
A method of calculating the coordinate data of an object includes the steps of: providing a mirror surface for generating a reflection of an object; providing an image sensor for capturing an image of the object and an image of the reflection; obtaining an individual image of the object when the image of the object and the image of the reflection overlap to form an overlapped image; and calculating the coordinate data of the object based on the overlapped image and the individual image.
Abstract:
A sensing system includes a complex reflector and an image sensor, in which the complex reflector is disposed on one side of a flat panel. The complex reflector includes a first section and a second section which are stacked, in which the first section provides a mirror image and a real image, and the second section provides a real image. The image sensor is used to capture an image generated by an object when touching a surface of the flat panel, and in the image captured by the image sensor, the object simultaneously generates a first object image in an image region corresponding to the second section and an image region corresponding to the first section, and generates a second object image in the image region corresponding to the first section.
Abstract:
The present invention discloses a touch panel apparatus, system and an operation method using for the same system. The apparatus recognizes a track of an object for executing a corresponding gesture function, and it includes: a touch control surface for the object to move on or above to form the track; at least one image sensor for capturing a plurality of continuous pictures including images of the object; and a processor for obtaining a plurality of displacement vectors according to changes in positions of the images of the object, comparing the displacement vectors with a set of basic vectors to obtain a code or a set of codes, and recognizing the code or the set of codes to execute the corresponding gesture function.
Abstract:
An image sensor includes a plurality of light detecting elements. The plurality of light detecting elements are arranged in a plurality of rows and a plurality of columns, wherein a flat field picture generated by the image sensor, the intensity standard deviation of pixels in each pixel column is greater than that of pixels in any pixel row, or the intensity standard deviation of pixels in each pixel row is greater than that of pixels of any pixel column.
Abstract:
A method of calculating the coordinate data of an object includes the steps of: providing a mirror surface for generating a reflection of an object; providing an image sensor for capturing an image of the object and an image of the reflection; obtaining an individual image of the object when the image of the object and the image of the reflection overlap to form an overlapped image; and calculating the coordinate data of the object based on the overlapped image and the individual image.
Abstract:
An optical touch system includes an image sensor module and a processor. The image sensor module includes a plurality of image sensing elements that can be independently controlled to achieve different exposure times. The plurality of image sensor elements can produce a picture including a plurality of pixel groups. The processor is configured to extract an intensity value of each pixel group and to select a set of successive pixel groups as an object image according to the intensity values of the pixel groups.
Abstract:
At a first time, a first image sensor and a second image sensor capture a first image and a second image including images of an object respectively. At a second time, the first image sensor and the second image sensor capture a third image and a fourth image including images of the object respectively. A coordinate calculation device calculates a first coordinate of the object at the first time according to the first image and the second image, and a second coordinate of the object at the second time according to the third image and the fourth image. A coordinate correction device calculates a displacement between the first time and the second time according to the first coordinate and the second coordinate, and corrects an output coordinate of the object at the second time according to the displacement.
Abstract:
A clamp structure includes a base plate and a pair of jaws. The jaws extend respectively from two transverse sides of the base plate and form a jaw opening opposite to the base plate. An aperture is formed longitudinally in the center of the base plate, wherein the transverse width the aperture is wider than the jaw opening. Therefore, the workers can connect the conductive terminals and the ribbon conveniently by pulling them out from inside of the clamp structure.
Abstract:
An image sensing module utilizes an image sensor to sense objects and a mirror image of the objects in a mirror through a plurality of first light filtering components with a first transmission spectrum and a plurality of second light filtering components with a second transmission spectrum for generating an image. A light filtering module substantially having the first transmission spectrum is disposed in front of the mirror. The image includes a plurality of pixels. Each pixel includes a first sub data and a second sub data. The image sensing module utilizes an image sensing controller to detect real images corresponding to the objects and virtual images correspond to the mirror image of the objects from the image according to the first sub data and the second sub data of the plurality of pixels.
Abstract:
A touch system and an optical touch system with a power-saving mechanism are presented. The touch system includes a sensing module and a processing module electrically connected to the sensing module; the optical touch system includes an optical sensing module and a processing module electrically connected to the optical sensing module. The processing module modulates a working frequency and/or a working voltage of the processing module according to a touch point count on a touch region, a preset function of the processing module, and/or an imaging count detected by the optical sensing module, so as to decrease a power consumption of the processing module. An electronic device equipped with such system may not only dynamically adjust the working frequency and/or the working voltage of the processing module, but also can determine a working frequency and/or a working voltage satisfying a report rate through an input of the system.