Abstract:
The present invention relates to power supplies, and more particularly, to a power supply having a maximum power point tracking function that can reduce manufacturing costs and circuit size by using a maximum power point tracking section with a simplified circuit in a solar photovoltaic power generator supplying power using sunlight instead of using a micro controller, the maximum power point tracking section that controls power switching according to a result of integration of a value obtained by dividing a power variation by a voltage variation to track a maximum power value. A power supply having a maximum power point tracking function according to an aspect of the invention may include: a converter section switching input power, and converting the switched input power into predetermined DC power; and a maximum power point tracking section detecting a voltage and a power value of the input power, dividing a variation of the detected power by a variation of the detected voltage, integrating a result of the division, and controlling the switching operation of the converter section according to a value of the integration.
Abstract:
A plasma display panel sustain driver that has a decreased flywheel current. The plasma display panel sustain driver includes a power recovery capacitor that provides a predetermined voltage to the plasma display panel; a sustain switching unit connected to the plasma display panel and that sustains or discharges the voltage charged in the plasma display panel; a first power recovery unit connected between the power recovery capacitor and sustain switching unit, the first power recovery unit forming a resonant circuit together with the plasma display panel to provide a voltage charged in the power recovery capacitor to the plasma display panel through the sustain switching unit when the sustain switching unit is inactivated, the first power recovery unit blocking the output current of the sustain switching unit when the sustain switching unit is activated; and a second power recovery unit connected between the power recovery capacitor and sustain switching unit, the second power recovery unit forming a resonant circuit together with the plasma display panel to discharge the voltage charged in the plasma display panel to the power recovery capacitor when the sustain switching unit is inactivated, the second power recovery unit blocking a current path to the sustain switching unit when the sustain switching unit is activated.
Abstract:
Provided is a backlight driving apparatus for a non-emissive display device which comprises an inverter (or lamp driver) (110) that converts a DC voltage to a preset voltage, a lamp (120) that emits light in response to the input of the converted voltage from the inverter (or lamp driver) (110), a detector (130) that detects electric current or brightness at the lamp, a controller (140) that controls the pulse width of a digital dimming signal in order to provide an adequate control of the electric current or brightness according to a lamp brightness command, a signal generator (150) that generates a signal with fixed frequency and fixed duty ratio for optimizing the operation of the inverter (or lamp driver) (110) and a digital dimmer (160) that generates an inverter driving signal from the logical intersection of the digital dimming signal generated by the controller (140) and the signal generated by the signal generator (150).
Abstract:
A ramp reset waveform generating apparatus in a display panel driving apparatus for a display panel includes a current source which is connected to a first electrode sustain circuit of the display panel through a first terminal of the current source, and generates a current corresponding to a predetermined reference current; a first switching unit which switches current flow between a second terminal of the current source and a first electrode terminal of the display panel; and a second switching unit which switches current flow between the second terminal of the current source and a second electrode terminal of the display panel, wherein, in a reset period, a ramp reset waveform is generated in the first electrode terminal and the second electrode terminal by the charge or discharge process of the display panel by the current generated in the current source according to a predetermined switching sequence.
Abstract:
Provided are an apparatus and a method of driving a high-efficiency plasma display panel for quickly eliminating a free-wheeling current, generated due to the parasitic effect in an energy recovery circuit, thereby improving energy recovery efficiency. The sustain-discharge driving device of a high-efficiency plasma display panel (PDP) includes a sustain-discharge switching unit, which connects charging and discharging paths of an energy recovery unit to the PDP according to a sustain-discharge sequence, and includes an energy recovery unit which, according to an energy recovery sequence, discharges energy of the PDP to an energy accumulation device through a resonance path while in discharging mode, charges the PDP with the energy accumulated in the energy accumulation device through a resonance path while in charging mode, and forms a closed circuit in which the voltage difference between both ends of an inductor is greater than a predetermined value so as to eliminate a free-wheeling current, which is generated in the inductor of the resonance path due to a parasitic effect, during mode transition.
Abstract:
A plasma display panel sustain driver that has a decreased flywheel current. The plasma display panel sustain driver includes a power recovery capacitor that provides a predetermined voltage to the plasma display panel; a sustain switching unit connected to the plasma display panel and that sustains or discharges the voltage charged in the plasma display panel; a first power recovery unit connected between the power recovery capacitor and sustain switching unit, the first power recovery unit forming a resonant circuit together with the plasma display panel to provide a voltage charged in the power recovery capacitor to the plasma display panel through the sustain switching unit when the sustain switching unit is inactivated, the first power recovery unit blocking the output current of the sustain switching unit when the sustain switching unit is activated; and a second power recovery unit connected between the power recovery capacitor and sustain switching unit, the second power recovery unit forming a resonant circuit together with the plasma display panel to discharge the voltage charged in the plasma display panel to the power recovery capacitor when the sustain switching unit is inactivated, the second power recovery unit blocking a current path to the sustain switching unit when the sustain switching unit is activated.
Abstract:
An apparatus and method for automatically adjusting a gradient of a reset ramp waveform of a plasma display panel in order to automatically adjust a ramp waveform generated in a reset period contributing to deviation adjustments between circuit components and between panels are provided. The apparatus manufacturing process is simple and the reset ramp waveform gradient is automatically adjusted, without manually adjusting the reset ramp waveform gradient, by sensing image information related to a gradient adjustment of the reset ramp waveform of the plasma display panel through a sensor and automatically generating a ramp waveform of a most suitable gradient based on the sensed image information.
Abstract:
An apparatus for driving a plasma display panel (PDP), which is capable of simplifying the structure of a sustain circuit directly affecting the illumination and power consumption of the PDP and increasing an energy recovery rate, and a method thereof are provided. The structure and switching sequence of the sustain circuit are designed so that the transition time to increase the amount of current of an inductor in an energy recovery circuit when charging/discharging the PDP can be minimized. Accordingly, the recovery rate of displacement power can be increased, and EMI can be decreased by not causing switching loss. In addition, the number of circuits required in the apparatus for driving the PDP can be reduced smaller than the number of circuits required in a conventional PDP driver.
Abstract:
The present invention discloses an energy recovery sustain circuit for an AC plasma display panel in which includes one energy recovery sustain circuit incorporating X and Y electrodes. The invention includes a load capacitor, first and fourth switching elements to charge the load capacitor up to a predetermined positive voltage, a second and third switching elements to charge the load capacitor up to a predetermined negative voltage, a fifth switching element to apply an external voltage to the load capacitor to continually sustain the predetermined positive or negative voltage in the load capacitor during a certain period, an inductor for generating the certain leveled positive or negative voltage to charge the load capacitor, and first and second capacitors for charging or discharging a current flowing through the inductor. The invention has a simplified configuration, low production cost, and high reliability.