Abstract:
A touch sensor panel can be constructed on a single surface of a substrate. The panel can be formed as a plurality of distributed RC lines arranged in an array of rows and columns. Each distributed RC line can include alternating connected transistors and metal pads formed on a single surface of the substrate. During operation, the rows and columns are enabled at different times, and the pulse travel times for each row and column in both directions are measured. Equalized travel times are then computed as the sum of the pulse travel times in both directions, and indicate which rows and columns have a finger touching it. The un-equalized pulse travel time data can then be used to determine the relative positions of the fingers within the rows and columns and un-ambiguously determine the positions of all the finger contacts.
Abstract:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation and handwriting into a versatile, ergonomic computer input device.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Image processing techniques that can improve the user interface experience associated with key-based input devices. In one embodiment, a motion sensitive mechanical keyboard can utilize orthogonally-oriented cameras to sense hand/finger motion over the surface of the keys. This arrangement can enable a standard look and feel mechanical keyboard to receive command and cursor input (e.g., pointing and gestures) from the user without requiring the user to move the user's hand off the keyboard. The image processing techniques can be utilized to minimize or remove undesirable cursor movement that can occur based on certain detected hand/finger motion from such cameras, including looming and/or vertical motions for example.
Abstract:
A system is disclosed for enhancing the stimulation signal bandwidth for a touch sensor panel and maintaining relatively uniform touch sensitivity over the touch sensor panel surface. In one embodiment, a bandwidth enhancement circuit is coupled in parallel to a sensor circuit. The sensor circuit includes a source of stimulating voltage, a drive line, a sense line, and a charge amplifier. The drive line and the sense line are coupled with each other by a mutual capacitance Csig. The bandwidth enhancement circuit can be a RC circuit coupled in parallel to the sensor circuit. The bandwidth enhancement circuit can be represented by two serially coupled resistors, each of which is also coupled to ground on one end, and two capacitors. In particular, one of the capacitors couples the bandwidth enhancement circuit to the drive line, and the other capacitor couples the bandwidth enhancement circuit to the sense line.
Abstract:
A multi-touch system is disclosed that recognizes simultaneous touchdown of four fingers on, above, or below the home row of keys as a modifier chord and applies modifiers such as Shift, Ctrl, or Alt to subsequent touch activity until none of the chord fingertips remain touching. Touches by the thumb of the modifier chord hand that occur before any modifiable typing or clicking activity cause the modifier chord to be canceled and reinterpreted as hand resting. The Shift modifier may be released temporarily during thumb keypresses that are intermixed with typing of capitalized characters. Distributing the modifier chord touches across different zones or key rows selects multiple modifiers. In an alternative embodiment, different modifiers can be selected with different arrangements of the fingers relative to one another within the chord, irrespective of absolute hand alignment with the touch surface.
Abstract:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal. The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
Abstract:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.