Abstract:
A method for subcarrier quality estimation in a wireless network is disclosed. The method comprises analyzing characteristics of at least some of the subcarriers of a first signal, creating feedback data based on the analyzed characteristics, wherein the quantity of the feedback data is less than the quantity of all of a plurality of measured signal-to-interference and noise power ratio (SINR) values of each subcarrier of the first signal, and transmitting the feedback data.
Abstract:
A method and wireless system that is able to adapt forward channel signal parameters to the different channel characteristics in each deployment environment. For example, the base station may update the waveform parameters based upon the real-time channel measurement feedback as received from the subscriber stations.
Abstract:
A transmitting apparatus is provided for a base station capable of communicating with a plurality of mobile stations in a wireless network. The transmitting apparatus includes a beamforming traffic path for use in beamforming transmission to one of the mobile stations, and a diversity traffic path for use in diversity transmission to the mobile station. A selector is coupled to the beamforming traffic path and the diversity traffic path for dynamically selecting which of the traffic paths is used for transmission to the mobile station.
Abstract:
A repeater for re-transmitting uplink and downlink signals in a wireless network. The repeater uses antenna cross-polarization, signal cancellation and digital processing techniques to reduce or eliminate coupling of echo signals between the receive and transmit antennas of the downlink and uplink signal paths in the repeater.
Abstract:
A mobile station for use in a wireless network comprising a first base station that transmits user data streams in a forward channel using a multiple-input, multiple-output (MIMO) antenna system. The mobile station implements a virtual MIMO antenna system to receive MIMO data signals transmitted by the first base station. The mobile station comprises first and second transceivers. The first transceiver receives the MIMO data signals transmitted by the first base station and stores a first plurality of MIMO data signal samples in a memory. The second transceiver receives directly from a second mobile station a second plurality of MIMO data signal samples received by the second mobile station from the first base station. The second plurality of MIMO data signal samples are stored in memory. A MIMO algorithm generates from the first and second plurality of samples the user data streams transmitted by the base station.