Abstract:
A sintered heat pipe, a manufacturing method thereof and a manufacturing method for a groove tube thereof are provided. The sintered heat pipe includes a groove tube, a sintered powder layer and a working fluid. The groove tube has a plurality of grooves and a first end and a second end opposite to the first end. Each groove extends along an axial direction of the groove tube. The first end and the second end are closed. The sintered powder layer is formed on an inside wall of the groove tube, and the groove tube is filled with the working fluid. The size of each powder in the sintered powder layer is greater than a width of each of the grooves.
Abstract:
A heat pipe comprises a metal tube and a sintered powder layer formed on an inner wall face of the metal tube. The sintered powder layer has a plurality of fine passages extending axially. The sintered powder layer may cover the inner wall face of the metal tube entirely or partially.
Abstract:
A sintered heat pipe comprises: a metal tube of which an inner wall is formed with a plurality of capillary grooves extending in a longitudinal direction; and a sintered powder layer partially covering the capillary grooves. With this structure, the liquid medium in the capillary grooves which moves toward a hot segment can be prevented from being blown by vapor moving toward the cold segment while the liquid medium condensed from the vapor at the cold segment can enter the capillary grooves without difficulty.
Abstract:
The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.