Abstract:
A method for representing a digital image having color values with an extended color gamut in a storage color space having a limited color gamut comprising the steps of: adjusting the color values of the extended color gamut digital image to fit within the limited color gamut to form a limited color gamut digital image; representing the limited color gamut digital image in the storage color space; determining a clipped limited color gamut digital image in which highly quantized regions in the limited color gamut digital image have been clipped; determining a residual image representing a difference between the extended color gamut digital image and the clipped limited color gamut digital image; and associating the residual image with the limited color gamut digital image in the storage color space such that the associated residual image and the limited color gamut digital image in the storage color space are adapted to be used to form a reconstructed extended color gamut digital image.
Abstract:
A scene balance correction method for a digital imaging device, including the steps of determining a low-resolution image from an input image in an input color space; applying a color transformation to convert the low-resolution image to a standard color space to form a standard color space low-resolution image; analyzing the standard color space low-resolution image to determine a set of standard color space scene balance correction factors; determining a set of corresponding input color space scene balance correction factors from the standard color space scene balance correction factors using the color transformation; and applying the corresponding input color space scene balance correction factors to the input image to form a corrected input image.
Abstract:
A method for processing a digitized continuous tone image so that such processed image is adapted to be applied to an image rendering device which prints dots from a set of two or more possible dot-areas and from a set of colorants having different colorant concentrations is disclosed. The method includes selecting a set of N dot-area and colorant concentration combinations, each of said combinations producing a different integrated optical density value and multilevel halftone processing the digitized continuous tone image to produce an output image having a set of output levels wherein one member of the set of N dot-area and colorant concentration combinations is associated with each of the possible output levels.
Abstract:
A method and apparatus are disclosed for calibrating a digital printer to provide a substantially aim printer response. A test target is processed through a set of potential calibration functions to form a set of processed test targets and the set of processed test targets is printed using the digital printer. Thereafter, the set of printed test targets is measured to determine the printer response. An error criterion is determined for each measured test target by comparing the measured printer response for each of the set of potential calibration functions to the aim printer response. The calibration function which has the smallest value of the error criterion is then selected.
Abstract:
An arrangment is disclosed for reducing edge artifacts produced when printing a digital image on a digital printer, which printer is capable of producing multiple output levels, said digital image being represented as a rectangular array of pixels. In this arrangement, the following steps are accomplished by: computing difference signals between a center pixel value and pixel values of a set of one or more neighboring pixels; determining a pixel correction value responsive to the computed difference signals; and computing a new center pixel value by modifying the center pixel value using the pixel correction value.
Abstract:
An improved error diffusion method for producing an output image from an input image having a set of digitized continuous-tone pixels is disclosed. The method includes computing a visually perceived input value for a digitized continuous-tone input pixel and computing a visually perceived output value for each of the possible output levels. The method further includes selecting the output level in response to the visually perceived input values and the visually perceived output value for each of the possible output levels according to an error criterion; determining an error signal between the visually perceived input value and the visually perceived output value for the selected output level; and weighting the error signal and adjusting the computed visually perceived input values for nearby pixels which have not been processed.
Abstract:
This invention minimizes the visibility of quantization artifacts associated with multi-dimensional color-calibration look-up tables of a limited size. Such artifacts occur when it is not practical to use interpolation methods to approximate color values which are intermediate to the color values stored in the look-up table. In such cases the input color signals are simply quantized for the purpose of addressing the look-up table. This invention works by applying local mean preserving spatial modulation to the input color image values prior to the quantization step. As with multi-level halftoning techniques, the result is that the appearance of intermediate color values is created because the observer will spatially average the output color values.
Abstract:
In the present invention each input pixel value is compared against a randomly selected threshold value to provide an output pixel having a value indicative of which of the values is greater. The threshold value is selected from one of a plurality of threshold matrices, each having a predetermined number of threshold values that are arranged in a pattern with the values for a base matrix being increased by an increment for each succeeding one of the plurality of threshold matrices. The selection of the one threshold matrix is made by means of a pseudo-random number generator.
Abstract:
A method for reducing banding artifacts for bi-directional multi-pass printing on an inkjet printer utilizing a printhead with a plurality of ink nozzles includes defining different print masks to be used for leftward and rightward printing passes such that both the order of ink laydown and the timing between ink laydown on different passes are each substantially constant for a given horizontal position within the image, independent of the vertical position within the image; and printing an input image on the inkjet printer with the defined print masks using a bi-directional multi-pass print mode.
Abstract:
A method for printing an input digital image using a digital printer having a set of colorants with substantially the same color but different densities, including a sequence of node points where each of the two or more colorants are either at their maximum or minimum values, setting colorant concentrations such that the color channel output responses corresponding to the sequence of node points are substantially equally spaced in a visually uniform color space; forming colorant control look-up tables to provide smooth transitions in the color channel output response between the sequence of node points; addressing the colorant control look-up tables with the printer code value for each pixel of the input digital image to determine the colorant control signals for each of the two or more colorants; and controlling the digital printer using the colorant control signals to produce a print of the input digital image.