Abstract:
The present invention relates to a method of synthesizing copper (I) 5-nitrotetrazolate. The method involves a series of interconnected steps. Initially, a stock solution of sodium 5-nitrotetrazolate is prepared in water from 5-aminotetrazole nitrate, which is then preserved for later use in producing copper (I) 5-nitrotetrazolate thereby eliminating the need for immediate utilization. A nascent Copper (I) chloride is prepared separately. In a single step, the stock solution of sodium 5-nitrotetrazolate is coupled with the nascent copper (I) chloride, resulting in the formation of copper (I) 5-nitrotetrazolate.
Abstract:
In one embodiment, an autonomous system border router (ASBR) advertises a same forwarding label for received advertised routes of a merging context that were advertised with a same forwarding label for the ASBR to use when sending corresponding packets. An ASBR receives via a routing protocol from a particular router in the same autonomous system, a plurality of same-labeled received routes advertised with a same first forwarding label within a merging context. In response to each of the plurality of same-labeled received routes having the same first forwarding label to use to forward packets to the particular router and being in the same merging context, the ASBR determines a merged forwarding label and advertises to a peer ASBR in another autonomous system (AS) each of the plurality of same-labeled received routes with the merged forwarding label for the peer ASBR to use to forward packets to the ASBR.
Abstract:
In an embodiment, a method comprises: receiving, at a data packet router, a path advertisement comprising information about an available path; determining whether the path advertisement comprises an originator identifier of an originator of the available path; in response to determining that the path advertisement comprises the originator identifier of the originator of the available path, determining whether the originator identifier of the available path is a router identifier of the data packet router, and in response to determining that the originator identifier of the available path is the router identifier of the data packet router, not accepting the path advertisement; wherein the method is performed by one or more processors of the data packet router.
Abstract:
In one embodiment, a network device may participate in an election process to elect one of two or more Provider Edge devices of a Redundancy Group to be a Designated Forwarder for the Redundancy Group, where the Redundancy Group is in a Service Provider network, and where the Redundancy Group serves a Customer Edge device of a customer network. The network device may forward multi-destination traffic to the Customer Edge device according to whether the network device is elected to be the Designated Forwarder for the Redundancy Group. Multi-destination traffic may include multicast traffic, broadcast traffic, or destination unknown unicast traffic.
Abstract:
In an embodiment, a method comprises: determining that a session restart on a restarting node has been initiated; in response to determining that the restarting node has preserved a last acknowledged version of routing information received from a peer node, and determining that the restarting node has preserved a routing state corresponding to the last acknowledged version of routing information, transmitting to the peer node a message indicating that the last acknowledged version of routing information and the routing state have been preserved at the restarting node; wherein the method is performed by one or more computing devices.
Abstract:
In an embodiment, a method comprises: determining that a session restart on a restarting node has been initiated; in response to determining that the restarting node has preserved a last acknowledged version of routing information received from a peer node, and determining that the restarting node has preserved a routing state corresponding to the last acknowledged version of routing information, transmitting to the peer node a message indicating that the last acknowledged version of routing information and the routing state have been preserved at the restarting node; wherein the method is performed by one or more computing devices.
Abstract:
In one embodiment, a network device may participate in an election process to elect one of two or more Provider Edge devices of a Redundancy Group to be a Designated Forwarder for the Redundancy Group, where the Redundancy Group is in a Service Provider network, and where the Redundancy Group serves a Customer Edge device of a customer network. The network device may forward multi-destination traffic to the Customer Edge device according to whether the network device is elected to be the Designated Forwarder for the Redundancy Group. Multi-destination traffic may include multicast traffic, broadcast traffic, or destination unknown unicast traffic.
Abstract:
In one embodiment, a method includes establishing in a Virtual Private Local Area Network (LAN) Service (VPLS) over Multi-Protocol Label Switching (MPLS) network a floating pseudowire between a first provider edge router and a redundancy group having a plurality of provider edge routers each configured to forward data toward a external device. Each provider edge router in the redundancy group is configured to maintain an active link to the external device. A provider edge router that is not a member of the redundancy group sends data directed to the external device through the floating pseudowire. Only one provider edge router in the redundancy group receives and forwards the particular data to the external device.
Abstract:
The present disclosure relates to an in vitro method for measuring the T75 of reduction kinetics of iron from Fe+3 to Fe+2 in an iron-sucrose complex and hence assessing the bioequivalency of iron-sucrose composition. According to the disclosed method, T75 of reduction kinetics of iron in an iron-sucrose complex in between 25 to 50 minutes indicates bioequivalent iron-sucrose composition.
Abstract:
A network data packet routing apparatus with BGP is configured to soft reset an AFI or SAFI, so that forwarding on routes associated with the AFI or SAFI can continue even after an event or error. One approach involves establishing a Border Gateway Protocol (BGP) peering session between a first node and a second node in a packet-switched network; detecting a BGP condition requiring a reset of a BGP address family indicator (AFI) data structure or a sub-address family indicator (SAFI) data structure, wherein the BGP condition does not affect states of routes in the AFI or SAFI; preserving a BGP state and a forwarding state of the AFI or SAFI; and forwarding data on routes represented in the AFI or SAFI. Soft notification messaging and marking routes as stale facilitates the approach.