Abstract:
Methods provided may generally include sending a BS of a first RAT a request message indicating a set of MIMO resources to reallocate; during a scan duration, communicating with the BS of the first RAT using non-reallocated MIMO resources and communicating with a BS of a second RAT using reallocated MIMO resources; and during a normal duration, communicating with the BS of the first RAT using the reallocated and non-reallocated MIMO resources. Apparatus provided may generally include logic for receiving a request message indicating a set of MIMO resources of the MS to reallocate; logic for, during a scan duration, communicating with the MS in a first transmission mode assuming the use of only non-reallocated MIMO resources by the MS; and logic for, during a normal duration, communicating with the MS in a second transmission mode assuming the use of the reallocated and non-reallocated MIMO resources by the MS.
Abstract:
A method and apparatus for decoding of tailbiting convolutional codes (TBCC) are disclosed. The proposed modified maximum-likelihood TBCC decoding technique preserves error correction performance of optimal maximum-likelihood based TBCC decoding, while the computational complexity is substantially decreased since a reduced number of decoding states has been evaluated. Compare to other sub-optimal TBCC decoding algorithms, modified maximum-likelihood TBCC decoding achieves improved packet error rate performance with similar computational complexity.
Abstract:
A system, method and device for frequency acquisition. In particular, the embodiments allow for a mobile telephone to simultaneously receive data and/or voice signals while acquiring a GPS signal for its navigation feature. The system, method and device of the present embodiments employ a digital rotator and a local oscillator in concert to acquire the respective signals, correct any frequency errors associated with those signals, and maintain a local timing reference suitable for receiving and transmitting data through a mobile network while simultaneously providing an accurate location through a GPS system.