Abstract:
Apparatus and methods for acquiring seismic data using a seabed seismic data cable positioned on a seabed are described, including correcting for the effect of one or more sensor non-linear motions, which improves accuracy of seismic data. One or multiple non-linear movements of the sensor may be corrected for. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A technique includes receiving data indicative of acoustic measurements acquired by receivers disposed on a seismic receiver spread including at least one streamer. The technique includes processing the data in a machine to determine a depth and/or shaped of the spread.
Abstract:
To calibrate an accelerometer, a seismic cable that carries the accelerometer is rotated. Data measured by the accelerometer as the seismic cable is rotated is received, and at least one calibration parameter according to the received data is computed. The at least one calibration parameter is for use in calibrating the accelerometer.
Abstract:
A technique facilitates collection and use of data on subterranean formations. The technique comprises creating a distributed sensor network having multiple sensors arranged in a desired pattern. The distributed sensor network is employed to collect seismic data from the multiple sensors. Additionally, the distributed network and sensors are designed to collect gravity data from the multiple sensors. The sensors may be arranged in a variety of environments, including land-based environments and seabed environments.
Abstract:
A technique includes obtaining different sets of data, which are provided by seismic sensors that share a tow line in common. Each data set is associated with a different spatial sampling interval. The technique includes processing the different sets of data to generate a signal that is indicative of a seismic event that is detected by the set of towed seismic sensors. The processing includes using the different spatial sampling intervals to at least partially eliminate noise from the signal.
Abstract:
Apparatus and methods for acquiring seismic data using a seabed seismic data cable positioned on a seabed are described, including correcting for the effect of one or more sensor non-linear motions, which improves accuracy of seismic data. One or multiple non-linear movements of the sensor may be corrected for. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A technique includes obtaining first measurements acquired by sensors of a towed seismic streamer, which are indicative of an inclination of the streamer. Based at least in part on the measurements, a shape of the streamer while in tow is determined.
Abstract:
An electromagnetic source for electromagnetic survey of a subsea formation includes a towfish configured to be towed by a surface vessel; a plurality of electrodes attached to the towfish; and an acoustic ranging system having acoustic components individually attached to each of the towfish and the plurality of electrodes, wherein the acoustic ranging system is configured to determine a geometry of the plurality of electrodes.
Abstract:
Seabed sensor units, systems including same, and methods for acquiring seabed data are described, one seabed sensor unit comprising a base, the base containing at least one sensor able to detect a seismic signal, electronics comprising a clock and one or more electronic components enabling the sensor to communicate seismic data to one or more memory modules, and a local autonomous power source. This abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
The present invention provides a coupling device (300). The coupling device includes a collar (315, 405) defining an opening therethrough to receive a seismic sensor (305) such that the collar (315, 405) permits rotation about the seismic sensor (305) and at least three extensions (320, 410) from the collar, the extensions (320, 410) being capable of rotating with the collar (315, 405) such that any two of them may couple to the ground.