Abstract:
A switchable two and three dimensional display (2D/3D display) suitable for being viewed by a user is provided. The 2D/3D display includes a liquid crystal display (LCD) panel and a switchable barrier. The LCD panel has a display area, a non-display area surrounding the display area, and a first black matrix extending from the display area to the non-display area. The first black matrix has a number of openings arranged in array and merely distributed within the display area. The switchable barrier has a 3D image control area, a non-display area surrounding the 3D image control area, and a second black matrix merely disposed within the non-display area. The second black matrix surrounds the 3D image control area. An area occupied by the 3D image control area is different from an area occupied by the display area.
Abstract:
An optical compensated bend (OCB) mode liquid crystal display (LCD) includes a pixel electrode, a color filter, a common electrode and a liquid crystal layer. The pixel electrode is formed on the first substrate of the OCB mode LCD. The color filter is formed on the second substrate of the OCB mode LCD. The common electrode is formed on the color filter. The liquid crystal layer is sandwiched between the first substrate and the second substrate. A step structure is formed on the second structure, so that the liquid crystal molecules in the liquid crystal layer are twisted into the bend state from the splay state uniformly and quickly.
Abstract:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
Abstract:
Improving image sticking of a liquid crystal display (LCD) including a plurality of pixels, each of which includes a first subpixel and a second subpixel, includes driving the first subpixels of the pixels with a first optimized common voltage, driving the second subpixels of the pixels with a second optimized common voltage, and driving the LCD with a panel voltage. The panel voltage is between the first and the second optimized common voltages.
Abstract:
A display apparatus and a method for manufacturing an optical compound layer are provided. The display apparatus comprises a light source and an optical compound layer, wherein the light source is adapted to emit a light beam, and the light beam has a polarization direction. The optical compound layer is disposed on the light source correspondingly to receive the light beam. The optical compound layer comprises a thin film and a plurality of dopants doped therein. One of the thin film and the dopants has a specific orientation which is substantially the same as the polarization direction of the light beam and the refractive indexes of the thin film and the dopants are substantially the same as well.
Abstract:
A 2D/3D image displaying apparatus includes a sub-pixel, a first and second data lines and a gamma circuit. The sub-pixel includes a first portion and a second portion. The first and second data lines are coupled to the first and second portion of the sub-pixel, respectively. The gamma circuit transmits correlated gamma signals to a driving circuit for driving the first and second part of the sub-pixel via the first and second data lines when 2D image is to be displayed, and transmits a single gamma signal to the driving circuit for driving the first and second portion of the sub-pixel via the first and second data lines when 3D image is to be displayed.
Abstract:
In a liquid crystal display panel, a pixel electrode includes at least a main electrode strip and a plurality of sub electrode branches. The sub electrode branches extend outwardly from two opposite edges of the main electrode strip. The main electrode strip includes at least a node-controlling portion, the controlling width of the node-controlling portion are different from a trunk width of the main electrode strip. Otherwise, a plurality of first sub electrode branches and a plurality of second sub electrode branches are extend outwardly from two opposite edges of the main electrode strip respectively. Relating to the position of the first sub electrode branches, the second sub electrode branches has a position-shift amount along the extending direction of the main electrode strip. The position-shift amount is smaller than the branch width of the first or second sub electrode branch.
Abstract:
The disclosed is a liquid crystal display panel having alignment protrusions with an appropriate optical density (OD) of about 0.3/μm to 3/μm, and preferably of about 0.8/μm to 1.3/μm. The invention solves problems such as light leakage in dark conditions caused by transparent alignment protrusions and mismatch caused by black alignment protrusions overlapping the alignment marks.
Abstract:
Improving image sticking of a liquid crystal display (LCD) including a plurality of pixels, each of which includes a first subpixel and a second subpixel, includes driving the first subpixels of the pixels with a first optimized common voltage, driving the second subpixels of the pixels with a second optimized common voltage, and driving the LCD with a panel voltage. The panel voltage is between the first and the second optimized common voltages.
Abstract:
A pixel structure, disposed on a first substrate, and electrically coupled to at least one scan line and at least one data line is provided. The pixel structure includes a first switch device, a second switch device, at least one pixel electrode, at least one control electrode, and at least one coupling electrode. The first switch device is electrically coupled to the scan line and the data line. The second switch device is electrically coupled to the scan line and the data line. The pixel electrode is electrically coupled to the second switch device. The control electrode is electrically coupled to the first switch element. The coupling electrode is disposed under the control electrode.