Abstract:
A system and method is described for determining whether a loudspeaker device has relocated, tilted, rotated, or changed environment such that one or more parameters for driving the loudspeaker may be modified and/or a complete reconfiguration of the loudspeaker system may be performed. In one embodiment, the system may include a set of sensors. The sensors provide readings that are analyzed to determine 1) whether the loudspeaker has moved since a previous analysis and/or 2) a distance of movement and/or a degree change in orientation of the loudspeaker since the previous analysis. Upon determining the level of movement is below a threshold value, the system adjusts previous parameters used to drive one or more of the loudspeakers. By adjusting previous parameters instead of performing a complete recalibration, the system provides a more efficient technique for ensuring that the loudspeakers continue to produce accurate sound for the listener.
Abstract:
A system having a head-mounted display (HMD) mount and a mobile device, are described. A processor of the system can determine whether the mobile device is mounted on the HMD mount and handle an audio signal communicated from the mobile device to a wireless headphone based on whether the mobile device is mounted on the HMD mount. When the mobile device is not mounted on the HMD mount, the mobile device or the wireless headphone may operate in a first audio mode. When the mobile device is mounted on the HMD mount, the mobile device or the wireless headphone may operate in a second audio mode. The second audio mode can reduce audio signal latency between the mobile device and the wireless headphone and increase motion-to-sound quality. Other embodiments are also described and claimed.
Abstract:
A speech recognition system for resolving impaired utterances can have a speech recognition engine configured to receive a plurality of representations of an utterance and concurrently to determine a plurality of highest-likelihood transcription candidates corresponding to each respective representation of the utterance. The recognition system can also have a selector configured to determine a most-likely accurate transcription from among the transcription candidates. As but one example, the plurality of representations of the utterance can be acquired by a microphone array, and beamforming techniques can generate independent streams of the utterance across various look directions using output from the microphone array.
Abstract:
A speech recognition system for resolving impaired utterances can have a speech recognition engine configured to receive a plurality of representations of an utterance and concurrently to determine a plurality of highest-likelihood transcription candidates corresponding to each respective representation of the utterance. The recognition system can also have a selector configured to determine a most-likely accurate transcription from among the transcription candidates. As but one example, the plurality of representations of the utterance can be acquired by a microphone array, and beamforming techniques can generate independent streams of the utterance across various look directions using output from the microphone array.
Abstract:
Method of improving voice quality using a wireless headset with untethered earbuds starts by receiving first acoustic signal from first microphone included in first untethered earbud and receiving second acoustic signal from second microphone included in second untethered earbud. First inertial sensor output is received from first inertial sensor included in first earbud and second inertial sensor output is received from second inertial sensor included in second earbud. First earbud processes first noise/wind level captured by first microphone, first acoustic signal and first inertial sensor output and second earbud processes second noise/wind level captured by second microphone, second acoustic signal, and second inertial sensor output. First and second noise/wind levels and first and second inertial sensor outputs are communicated between the earbuds. First earbud transmits first acoustic signal and first inertial sensor output when first noise and wind level is lower than second noise/wind level. Other embodiments are described.
Abstract:
A speech recognition system for resolving impaired utterances can have a speech recognition engine configured to receive a plurality of representations of an utterance and concurrently to determine a plurality of highest-likelihood transcription candidates corresponding to each respective representation of the utterance. The recognition system can also have a selector configured to determine a most-likely accurate transcription from among the transcription candidates. As but one example, the plurality of representations of the utterance can be acquired by a microphone array, and beamforming techniques can generate independent streams of the utterance across various look directions using output from the microphone array.
Abstract:
Method of improving voice quality using a wireless headset with untethered earbuds starts by receiving first acoustic signal from first microphone included in first untethered earbud and receiving second acoustic signal from second microphone included in second untethered earbud. First inertial sensor output is received from first inertial sensor included in first earbud and second inertial sensor output is received from second inertial sensor included in second earbud. First earbud processes first noise/wind level captured by first microphone, first acoustic signal and first inertial sensor output and second earbud processes second noise/wind level captured by second microphone, second acoustic signal, and second inertial sensor output. First and second noise/wind levels and first and second inertial sensor outputs are communicated between the earbuds. First earbud transmits first acoustic signal and first inertial sensor output when first noise and wind level is lower than second noise/wind level. Other embodiments are described.
Abstract:
A method for adapting a threshold used in multi-channel audio voice activity detection. Strengths of primary and secondary sound pick up channels are computed. A separation, being a measure of difference between the strengths of the primary and secondary channels, is also computed. An analysis of the peaks in separation is performed, e.g. using a leaky peak capture function that captures a peak in the separation and then decays over time, or using a sliding window min-max detector. A threshold that is to be used in a voice activity detection (VAD) process is adjusted, in accordance with the analysis of the peaks. Other embodiments are also described and claimed.
Abstract:
Digital signal processing for microphone partial occlusion detection is described. In one embodiment, an electronic system for audio noise processing and for noise reduction, using a plurality of microphones, includes a first noise estimator to process a first audio signal from a first one of the microphones, and generate a first noise estimate. The electronic system also includes a second noise estimator to process the first audio signal, and a second audio signal from a second one of the microphones, in parallel with the first noise estimator, and generate a second noise estimate. A microphone partial occlusion detector determines a low frequency band separation of the first and second audio signals and a high frequency band separation of the first and second audio signals to generate a microphone partial occlusion function that indicates whether one of the microphones is partially occluded.
Abstract:
Unwanted audio, such as explicit language, may be removed during audio playback. An audio player may identify and remove unwanted audio while playing an audio stream. Unwanted audio may be replaced with alternate audio, such as non-explicit lyrics, a “beep”, or silence. Metadata may be used to describe the location of unwanted audio within an audio stream to enable the removal or replacement of the unwanted audio with alternate audio. An audio player may switch between clean and explicit versions of a recording based on the locations described in the metadata. The metadata, as well as both the clean and explicit versions of the audio data, may be part of a single audio file, or the metadata may be separate from the audio data. Additionally, real-time recognition analysis may be used to identify unwanted audio during audio playback.