Abstract:
A device can receive, from a network node device, call trace event data relating to characteristics of a wireless communication session between the network node device and a user equipment. The device can sequence and combine the call trace event data for a period of the wireless communication session. The device can analyze the call trace event data to determine a category of network communication traffic transmitted via a communication channel between the network node device and the user equipment. In response to a determination that the network communication traffic comprises streaming video packets, the device can facilitate directing of network resources to be allocated to support the wireless communication session.
Abstract:
Techniques for locating a mobile device using a time distance of arrival (TDOA) method with disturbance scrutiny are provided. In an aspect, for respective combinations of three base station devices of a number of base station devices greater than or equal to three, intersections in hyperbolic curves, generated using a closed form function with input values based on differences of distances from the device to pairs of base station devices of the respective combinations of three base station devices, are determined. The intersection points are then tested for robustness against measurement errors associated with the input values and a subset of the intersection points that are associated with a degree of resistance to the measurement errors are selected to estimate a location of the device.
Abstract:
Techniques for locating a mobile device using a time distance of arrival (TDOA) method with disturbance scrutiny are provided. In an aspect, for respective combinations of three base station devices of a number of base station devices greater than or equal to three, intersections in hyperbolic curves, generated using a closed form function with input values based on differences of distances from the device to pairs of base station devices of the respective combinations of three base station devices, are determined. The intersection points are then tested for robustness against measurement errors associated with the input values and a subset of the intersection points that are associated with a degree of resistance to the measurement errors are selected to estimate a location of the device.
Abstract:
Determining levels of geographic redundancy among radios of a wireless radio network is disclosed. The level of geographic redundancy for a radio can affect the determination of location information for a user equipment (UE) on the wireless radio network. The disclosed subject matter can be employed in conjunction with timed fingerprint location (TFL) technologies to facilitate selection of radios employed in determining time values for TFL location determination. Levels of geographic redundancy can be employed to rank or order radios of a wireless radio network so as to reduce the likelihood of using geographically redundant radios in location determination. Further, rules can be selected to adjust threshold values and equations employed in determining the levels of geographic redundancy. Moreover, rules can be selected to apply boundary conditions to reduce the number of determinations formed for a set of radios of the wireless radio network.