Abstract:
Concepts and technologies disclosed herein are directed to a flexible behavioral chain (“FBC”) framework for permission-based enterprise-focused blockchain applications. According to one aspect disclosed herein, a chain framework module (“CFM”) executed by a FBC system can receive a new block request to add a new block to an FBC. The new block request can be created by a trigger management module (“TMM”) executed by the FBC system in response to a trigger, such as a customer touchpoint, a customer engagement, a subscribed event, and/or a virtual event. In response to the new block request, the CFM can generate the new block. A customer value score derivation module (“CVSDM”) executed by the FBC system can determine a customer value score (“CVS”) for a customer. The CFM can incorporate the CVS into the new block. The CFM can connect the new block to the FBC.
Abstract:
Concepts and technologies disclosed herein are directed to a flexible behavioral chain (“FBC”) framework for permission-based enterprise-focused blockchain applications. According to one aspect disclosed herein, a chain framework module (“CFM”) executed by a FBC system can receive a new block request to add a new block to an FBC. The new block request can be created by a trigger management module (“TMM”) executed by the FBC system in response to a trigger, such as a customer touchpoint, a customer engagement, a subscribed event, and/or a virtual event. In response to the new block request, the CFM can generate the new block. A customer value score derivation module (“CVSDM”) executed by the FBC system can determine a customer value score (“CVS”) for a customer. The CFM can incorporate the CVS into the new block. The CFM can connect the new block to the FBC.
Abstract:
Based on electronic communication received from a wireless device or from an access point, it is determined that a wireless signal relay is needed between the wireless device and the access point. In response to the determination, a drone is deployed between the wireless device and the access point to relay wireless signals between the wireless device and the access point. The deployed drone measures a first strength of a first wireless signal received from the wireless device or measures a second strength of a second wireless signal received from the access point. Based on the measurements, it is determined that the wireless device has moved relative to the access point after the drone has been deployed. In response to the determining that the wireless device has moved, the location of the drone is adjusted to maintain the first strength or the second strength above a predetermined level.
Abstract:
Concepts and technologies disclosed herein are directed to escalation of feedback instances. In one aspect disclosed herein, a feedback instance escalation resolver (“FIER”) system can receive a feedback instance escalation request from an original feedback instance. The feedback instance escalation request can identify a deficiency in the original feedback instance. The FIER system can examine the feedback instance escalation request and an objective of the original feedback instance to identify a new objective of an escalated feedback instance. The FIER system can create a definition for the escalated feedback instance to satisfy the objective and can map the definition for the escalated feedback instance to an existing feedback instance model. The FIER system can generate a feedback instance escalation realization request directed to a feedback instance orchestrator and controller (“FIOC”) system. The feedback instance escalation realization request can instruct the FIOC system to realize the escalated feedback instance.
Abstract:
Based on electronic communication received from a wireless device or from an access point, it is determined that a wireless signal relay is needed between the wireless device and the access point. In response to the determination, a drone is deployed between the wireless device and the access point to relay wireless signals between the wireless device and the access point. The deployed drone measures a first strength of a first wireless signal received from the wireless device or measures a second strength of a second wireless signal received from the access point. Based on the measurements, it is determined that the wireless device has moved relative to the access point after the drone has been deployed. In response to the determining that the wireless device has moved, the location of the drone is adjusted to maintain the first strength or the second strength above a predetermined level.
Abstract:
Concepts and technologies disclosed herein are directed to a pressure-based input method for user devices. According to one aspect disclosed herein, a user device can receive an output from a pressure sensor. The output can include parameters associated with a pressure applied to the pressure sensor by a user. The user device can analyze the output to determine a command to be executed by the user device. The user device can execute the command.
Abstract:
Concepts and technologies disclosed herein are directed to consultation among feedback instances. According to one aspect, a system can receive a feedback instance consultation request for a consultation among an original feedback instance and a target feedback instance. The target feedback instance can be consulted with by the original feedback instance to enable the original feedback instance to cure a deficiency. The system can examine the feedback instance consultation request to determine if a match exists with an application programming interface associated with a target feedback instance model upon which the target feedback instance is based. If examination of the feedback instance consultation request determines that a match exists, the system can update the target feedback instance model with an intercommunication plan by which the consultation can occur. The system also can update an original feedback instance model upon which the original feedback instance is based.
Abstract:
Concepts and technologies disclosed herein are directed to multiple feedback instance inter-coordination to determine optimal actions. According to one aspect, a system can receive a plurality of events associated with a group of feedback instances operating in a runtime. The system can examine the plurality of events to determine if a match exists between the plurality of events and an optimization plan. If so, the system can instruct a further system to realize the optimization plan. If not, the system can identify an extensibility of a feedback instance in the group of feedback instances. The extensibility can extend functionality of the feedback instance to provide additional information responsive to an event of the plurality of events. The system can update a feedback instance model associated with the feedback instance for which the extensibility was identified and can instruct the further system to extend the scope of the feedback instance.
Abstract:
Concepts and technologies disclosed herein are directed to the dynamic creation and management of ephemeral coordinated feedback instances. In accordance with one aspect disclosed herein, a system can receive a feedback instance creation request. The feedback instance creation request can be received from a policy engine in response to the policy engine attempting to satisfy a policy request. The system can examine the feedback instance creation request to determine an objective to be met by a new feedback instance model. The system can build a specification for the new feedback instance model. The specification can be built in accordance with a feedback instance building policy. The system can create the new feedback instance model in accordance with the specification. The system can store the new feedback instance model and a unique identifier associated with the new feedback instance model in a feedback instance model repository.
Abstract:
Concepts and technologies disclosed herein are directed to a pressure-based input method for user devices. According to one aspect disclosed herein, a user device can receive an output from a pressure sensor. The output can include parameters associated with a pressure applied to the pressure sensor by a user. The user device can analyze the output to determine a command to be executed by the user device. The user device can execute the command.