Abstract:
A solid electrolytic capacitor that comprises a sintered porous anode, a dielectric layer that overlies the anode body, and a solid electrolyte overlying the dielectric layer is provided. The anode is formed from a finely divided powder (e.g., nodular or angular) having a relatively high specific charge. Despite the use of such high specific charge powders, high voltages can be achieved through a combination of features relating to the formation of the anode and solid electrolyte. For example, relatively high press densities and sintering temperatures may be employed to achieve “sinter necks” between adjacent agglomerated particles that are relatively large in size, which render the dielectric layer in the vicinity of the neck less susceptible to failure at high forming voltages.
Abstract:
A capacitor whose electrical properties can be stable under a variety of different conditions is provided. The solid electrolyte of the capacitor is formed from a combination of an in situ polymerized conductive polymer and a hydroxy-functional nonionic polymer. One benefit of such an in situ polymerized conductive polymer is that it does not require the use of polymeric counterions (e.g., polystyrenesulfonic anion) to compensate for charge, as with conventional particle dispersions, which tend to result in ionic polarization and instable electrical properties, particularly at the low temperatures noted above. Further, it is believed that hydroxy-functional nonionic polymers can improve the degree of contact between the polymer and the surface of the internal dielectric, which unexpectedly increases the capacitance performance and reduces ESR.
Abstract:
A capacitor for use in relatively high voltage environments is provided. During formation, anodization may be carried out in a manner so that the dielectric layer possesses a relatively thick portion that overlies an external surface of the anode and a relatively thin portion that overlies an interior surface of the anode. In addition to employing a dielectric layer with a differential thickness, the solid electrolyte is also formed from the combination of pre-polymerized conductive polymer particles and a hydroxy-functional nonionic polymer.
Abstract:
A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains an alkyl-substituted poly(3,4-ethylenedioxythiophene) having a certain structure. Such polymers can result in a higher degree of capacitance than many conventional types of coating materials. Further, because the polymers are generally semi-crystalline or amorphous, they can dissipate and/or absorb the heat associated with the high voltage. The degree of surface contact between the conductive coating and the surface of the metal substrate may also be enhanced in the present invention by selectively controlling the manner in which the conductive coating is formed.
Abstract:
A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
Abstract:
A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. An interfacial coating is disposed on at least a portion of the anode termination and/or cathode termination and is in contact with the casing material. The coating contains a hydrophobic resinous material and the adhesion strength of the casing material is about 5 newtons per square millimeter or more as determined at a temperature of about 23° C. and relative humidity of about 30%.
Abstract:
A capacitor assembly for use in ultrahigh voltage environments is provided. To help achieve good performance at such high voltages, a variety of aspects of the assembly are controlled in the present invention, including the number of capacitor elements, the manner in which the capacitor elements are arranged and incorporated into the assembly, and the manner in which the capacitor elements are formed. For example, the capacitor assembly contains an anode termination to which the anode lead of a first capacitor element is electrically connected and a cathode termination to which the cathode of a second capacitor element is electrically connected. To help improve the breakdown voltage properties of the assembly, the capacitor elements are electrically connected in series such that the anode lead of the second capacitor element is also electrically connected to the cathode of the first capacitor element via a conductive member.
Abstract:
A capacitor whose electrical properties can be stable under a variety of different conditions is provided. The solid electrolyte of the capacitor is formed from a combination of an in situ polymerized conductive polymer and a hydroxy-functional nonionic polymer. One benefit of such an in situ polymerized conductive polymer is that it does not require the use of polymeric counterions (e.g., polystyrenesulfonic anion) to compensate for charge, as with conventional particle dispersions, which tend to result in ionic polarization and instable electrical properties, particularly at the low temperatures noted above. Further, it is believed that hydroxy-functional nonionic polymers can improve the degree of contact between the polymer and the surface of the internal dielectric, which unexpectedly increases the capacitance performance and reduces ESR.
Abstract:
A solid electrolytic capacitor that comprises a sintered porous anode, a dielectric layer that overlies the anode body, and a solid electrolyte overlying the dielectric layer is provided. The anode is formed from a finely divided powder (e.g., nodular or angular) having a relatively high specific charge. Despite the use of such high specific charge powders, high voltages can be achieved through a combination of features relating to the formation of the anode and solid electrolyte. For example, relatively high press densities and sintering temperatures may be employed to achieve “sinter necks” between adjacent agglomerated particles that are relatively large in size, which render the dielectric layer in the vicinity of the neck less susceptible to failure at high forming voltages.
Abstract:
A solid electrolytic capacitor that comprises a sintered porous anode, a dielectric layer that overlies the anode body, and a solid electrolyte overlying the dielectric layer is provided. The anode is formed from a finely divided powder (e.g., nodular or angular) having a relatively high specific charge. Despite the use of such high specific charge powders, high voltages can be achieved through a combination of features relating to the formation of the anode and solid electrolyte. For example, relatively high press densities and sintering temperatures may be employed to achieve “sinter necks” between adjacent agglomerated particles that are relatively large in size, which render the dielectric layer in the vicinity of the neck less susceptible to failure at high forming voltages.