Abstract:
A solid electrolytic capacitor is provided that contains a casing material that encapsulates the capacitor element. The casing material is formed from a curable resinous matrix that has a coefficient of thermal expansion of about 42 ppm/° C. or less at a temperature above the glass transition temperature of the resinous matrix. Further, the capacitor exhibits an initial equivalence series resistance of about 200 mohms or less as determined at an operating frequency of 100 kHz and temperature of 23° C., and the ratio of the equivalence series resistance of the capacitor after being exposed to a temperature of 125° C. for 560 hours to the initial equivalence series resistance of the capacitor is about 2.0 or less.
Abstract:
A capacitor assembly that comprises a housing, a capacitor element that is hermetically sealed within the housing, and a thermally conductive material that at least partially encapsulates the capacitor element is provided. The capacitor element includes a sintered anode body, a dielectric overlying the anode body, and a solid electrolyte overlying the dielectric. The thermally conductive material has a thermal conductivity of about 1 W/m-K or more as determined in accordance with ISO 22007-2:2014.
Abstract:
A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. A barrier coating is disposed on at least a portion of the anode termination and/or cathode termination and is in contact with the casing material. The coating contains a hydrophobic resinous material that includes an olefin polymer having a glass transition temperature of from about 20° C. to about 160° C.
Abstract:
A capacitor assembly configured to effectively dissipate heat when exposed to a high ripple current is provided. The assembly includes a plurality of capacitor elements, each including an anode body and lead, a dielectric layer overlying the anode body, and a solid electrolyte. Each capacitor element is defined by upper and lower major surfaces, first opposing minor surfaces, and second opposing minor surfaces. The major surfaces each have a surface area greater than that of each of the minor opposing surfaces. A hermetically sealed housing having a length, width, and height defines an interior cavity within which the plurality of capacitor elements are positioned. The ratio of the length to the height ranges from about 2 to about 80. Further, the lower major face of each capacitor element faces a lower wall of the housing, where the lower wall is defined by the housing's length and width.
Abstract:
A capacitor assembly configured to effectively dissipate heat when exposed to a high ripple current is provided. The assembly includes a plurality of capacitor elements, each including an anode body and lead, a dielectric layer overlying the anode body, and a solid electrolyte. A metal cylindrical housing having a lid and base, where the lid has a diameter in an −x direction and the metal cylindrical housing has a height in a −z direction, defines an interior cavity within which the plurality of capacitor elements are arranged about a central axis running along the −z direction. The ratio of the diameter to the height of the base ranges from about 1.5 to about 20. Further, the metal cylindrical housing is hermetically sealed.
Abstract:
A solid electrolytic capacitor is provided that contains a casing material that encapsulates the capacitor element. The casing material is formed from a curable resinous matrix that has a coefficient of thermal expansion of about 42 ppm/° C. or less at a temperature above the glass transition temperature of the resinous matrix. Further, the capacitor exhibits an initial equivalence series resistance of about 200 mohms or less as determined at an operating frequency of 100 kHz and temperature of 23° C., and the ratio of the equivalence series resistance of the capacitor after being exposed to a temperature of 125° C. for 560 hours to the initial equivalence series resistance of the capacitor is about 2.0 or less.
Abstract:
A module of capacitor assemblies is provided. To increase the capacitance and efficiency of the module, capacitor assemblies may be stacked. A variety of aspects of the module are controlled in the present invention, including the number of capacitor assemblies, the manner in which the capacitor assemblies are arranged and incorporated into the module, and the manner in which the capacitor assemblies are formed. For example, the anode terminations of each capacitor assembly are electrically connected and the cathode terminations of each capacitor assembly are electrically connected. The capacitance and efficiency of the module can be improved while maintaining the footprint of a single capacitor assembly.
Abstract:
A capacitor element for use in high voltage environments is provided. More particularly, the capacitor element contains an anode that includes a solid electrolyte that overlies an anode. The anode includes a sintered porous pellet and a dielectric layer formed on a surface of the pellet and within its pores. The present inventors have discovered that the ability to achieve such high voltages can be achieved through the use of a dielectric having a reduced degree of crystallinity.
Abstract:
A capacitor assembly that comprises a housing, a capacitor element that is hermetically sealed within the housing, and a thermally conductive material that at least partially encapsulates the capacitor element is provided. The capacitor element includes a sintered anode body, a dielectric overlying the anode body, and a solid electrolyte overlying the dielectric. The thermally conductive material has a thermal conductivity of about 1 W/m-K or more as determined in accordance with ISO 22007-2:2014.
Abstract:
A solid electrolytic capacitor that contains a capacitor element including an anode body, a dielectric layer, and solid electrolyte is provided. The capacitor element also includes an anode lead (e.g., wire, tape, etc.) that is electrically connected to the anode body. A first portion of the anode lead is embedded within the anode body, while a second portion of the anode lead extends from the anode body in a longitudinal direction. Contrary to conventional capacitors in which the exposed portion of the anode lead is supported by a complex and bulky lead frame assembly, there is no lead frame present in the capacitor of the present disclosure. Thus, the volumetric efficiency of the finished capacitor can be increased. An assembly containing a matrix of multiple solid electrolytic capacitor elements is also provided, as is a method for forming a matrix that comprises multiple solid electrolytic capacitor elements.