Abstract:
Many search engines attempt to understand and predict a user's search intent after the submission of search queries. Predicting search intent allows search engines to tailor search results to particular information needs of the user. Unfortunately, current techniques passively predict search intent after a query is submitted. Accordingly, one or more systems and/or techniques for actively predicting search intent from user browsing behavior data are disclosed herein. For example, search patterns of a user browsing a web page and shortly thereafter performing a query may be extracted from user browsing behavior. Queries within the search patterns may be ranked based upon a search trigger likelihood that content of the web page motivated the user to perform the query. In this way, query suggestions having a high search trigger likelihood and a diverse range of topics may be generated and/or presented to users of the web page.
Abstract:
A task guidance tool that displays instructional steps and associated advertisements may facilitate the accomplishment of a task by users who are otherwise unfamiliar with the task. The task guidance tool may be developed from input data mined from various sources. The task guidance tool may display a series of step pages in which each step page include instructions for accomplishing a corresponding step of the task. Further, one or more step pages of the task guidance tool may be provided with selected advertisements that are displayed with the step instructions.
Abstract:
Some implementations provide techniques for selecting web pages for inclusion in an index. For example, some implementations apply regularization to select a subset of the crawled web pages for indexing based on link relationships between the crawled web pages, features extracted from the crawled web pages, and user behavior information determined for at least some of the crawled web pages. Further, in some implementations, the user behavior information may be used to sort a training set of crawled web pages into a plurality of labeled groups. The labeled groups may be represented in a directed graph that indicates relative priorities for being selected for indexing.
Abstract:
Importance ranking of web pages is performed by defining a graph-based regularization term based on document features, edge features, and a web graph of a plurality of web pages, and deriving a loss term based on human feedback data. The graph-based regularization term and the loss term are combined to obtain a global objective function. The global objective function is optimized to obtain parameters for the document features and edge features and to produce static rank scores for the plurality of web pages. Further, the plurality of web pages is ordered based on the static rank scores.
Abstract:
A clustering system generates an original Laplacian matrix representing objects and their relationships. The clustering system initially applies an eigenvalue decomposition solver to the original Laplacian matrix for a number of iterations. The clustering system then identifies the elements of the resultant eigenvector that are stable. The clustering system then aggregates the elements of the original Laplacian matrix corresponding to the identified stable elements and forms a new Laplacian matrix that is a compressed form of the original Laplacian matrix. The clustering system repeats the applying of the eigenvalue decomposition solver and the generating of new compressed Laplacian matrices until the new Laplacian matrix is small enough so that a final solution can be generated in a reasonable amount of time.
Abstract:
An anti-spam tool works with a web browser to detect spam webpages locally on a client machine. The anti-spam tool can be implemented either as a plug-in module or an integral part of the browser, and manifested as a toolbar. The tool can perform an anti-spam action whenever a webpage is accessed through the browser, and does not require direct involvement of a search engine. A spam detection module installed on the computing device determines whether a webpage being accessed or whether a link contained in the webpage being accessed is spam, by comparing the URL of the webpage or the link with a spam list. The spam list can be downloaded from a remote search engine server, stored locally and updated from time to time. A two-level indexing technique is also introduced to improve the efficiency of the anti-spam tool's use of the spam list.
Abstract:
Ranking documents based on a series of web graphs collected over time is provided. A ranking system provides multiple transition probability distributions representing different snapshots or times. Each transition probability distribution represents a probability of transitioning from one document to another document within a collection of documents using a link of the document. The ranking system determines a stationary probability distribution for each snapshot based on the transition probability distributions for that snapshot and the stationary probability distribution of the previous snapshot. The stationary probability distributions represent a ranking of the documents over time.
Abstract:
A method and system for high-order co-clustering of objects of heterogeneous types using multiple bipartite graphs is provided. A clustering system represents relationships between objects of a first type and objects of a third type as a first bipartite graph and relationships between objects of a second type and objects of the third type as a second bipartite graph. The clustering system defines an objective function that specifies an objective of the clustering process that combines an objective for the first bipartite graph and an objective for the second bipartite graph. The clustering system solves the objective function and then applies a clustering algorithm such as the K-means algorithm to the solution to identify the clusters of heterogeneous objects.
Abstract:
A method and system for determining temporal importance of documents having links between documents based on a temporal analysis of the links is provided. A temporal ranking system collects link information or snapshots indicating the links between documents at various snapshot times. The temporal ranking system calculates a current temporal importance of a document by factoring in the current importance of the document derived from the current snapshot (i.e., with the latest snapshot time) and the historical importance of the document derived from the past snapshots. To calculate the current temporal importance of a web page, the temporal ranking system aggregates the importance of the web page for each snapshot.
Abstract:
A method and system for high-order co-clustering of objects of heterogeneous types using multiple bipartite graphs is provided. A clustering system represents relationships between objects of a first type and objects of a third type as a first bipartite graph and relationships between objects of a second type and objects of the third type as a second bipartite graph. The clustering system defines an objective function that specifies an objective of the clustering process that combines an objective for the first bipartite graph and an objective for the second bipartite graph. The clustering system solves the objective function and then applies a clustering algorithm such as the K-means algorithm to the solution to identify the clusters of heterogeneous objects.